chứng minh rằng bất phương trình sau nghiệm đúng với mọi x: \(\frac{-4}{x^2-2x+2}\)-5<0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\Delta=\left(m+1\right)^2-4m\left(m-1\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\-3m^2+7m+1< 0\end{matrix}\right.\)
\(\Leftrightarrow m< \dfrac{7-\sqrt{61}}{6}\)
2.
\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\\Delta'=4\left(m+1\right)^2-m\left(m-5\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\3m^2+13m+4\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\-4\le m\le-\dfrac{1}{3}\end{matrix}\right.\)
Không tồn tại m thỏa mãn
Đặt \(f\left(x\right)=\left(5-3m\right)x^7+m^2x^4-2\Rightarrow f\left(x\right)\) liên tục trên R
\(f\left(0\right)=-2< 0\)
\(f\left(1\right)=m^2-3m+3=\left(m-\dfrac{3}{2}\right)^2+\dfrac{3}{4}>0\) ;\(\forall m\)
\(\Rightarrow f\left(0\right).f\left(1\right)< 0\) ;\(\forall m\)
\(\Rightarrow f\left(x\right)=0\) luôn có ít nhất 1 nghiệm thuộc \(\left(0;1\right)\) (đpcm)
hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
\(x^2-2x+4\sqrt{\left(4-x\right)\left(x+2\right)}-18+m\ge0\)
\(\Leftrightarrow-\left(-x^2+2x+8\right)+4\sqrt{-x^2+2x+8}\ge10-m\left(1\right)\)
Đặt \(t=\sqrt{-x^2+2x+8}\left(0\le t\le3\right)\)
\(\left(1\right)\Leftrightarrow10-m\le f\left(t\right)=-t^2+4t\)
Yêu cầu bài toán thỏa mãn khi
\(10-m\le minf\left(t\right)=min\left\{f\left(0\right);f\left(3\right);f\left(2\right)\right\}=f\left(0\right)=0\)
\(\Leftrightarrow m\ge10\)
Vậy \(m\ge10\)
\(pt:\left(-x^2+3x-2\right)m+3x-5=0\)
\(\Leftrightarrow-x^2m+3mx-2m+3x-5=0\)
\(\Leftrightarrow-x^2m+\left(3m+3\right)x-2m-5=0\)
pt co nghiem \(\Leftrightarrow\Delta=\left(3m+3\right)^2-4m\left(2m+5\right)\ge0\)
\(\Leftrightarrow9m^2+18m+9-8m^2-20m\ge0\)
\(\Leftrightarrow\left(m-1\right)^2+8>0\left(ld\right)\)
Vay pt luon co nghiem voi moi m
Ta có \(x^2-2x+2=\left(x-1\right)^2+1>0\)
\(\Rightarrow\frac{-4}{x^2-2x+2}< 0\)
\(\Rightarrow\frac{-4}{x^2-2x+2}-5< 0\)(đúng vóiư mọi x)