Cho các số thực không âm a,b,c thỏa mãn 3(a2+b2+c2)+ab+bc+ca=12. CMR\(22\le\frac{a^2+b^2+c^2}{a+b+c}+ab+bc+ca\le32\)
Cao nhân giải giúp e vs ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu có 2 số đồng thời bằng 0 BĐT tương đương \(0\le\dfrac{3}{4}\) hiển nhiên đúng
Nếu ko có 2 số nào đồng thời bằng 0:
\(VT=\dfrac{bc}{a^2+b^2+a^2+c^2}+\dfrac{ca}{a^2+b^2+b^2+c^2}+\dfrac{ab}{a^2+c^2+b^2+c^2}\)
\(VT\le\dfrac{bc}{2\sqrt{\left(a^2+b^2\right)\left(a^2+c^2\right)}}+\dfrac{ca}{2\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}}+\dfrac{ab}{2\sqrt{\left(a^2+c^2\right)\left(b^2+c^2\right)}}\)
\(VT\le\dfrac{1}{4}\left(\dfrac{b^2}{a^2+b^2}+\dfrac{c^2}{a^2+c^2}+\dfrac{a^2}{a^2+b^2}+\dfrac{c^2}{b^2+c^2}+\dfrac{a^2}{a^2+c^2}+\dfrac{b^2}{b^2+c^2}\right)=\dfrac{3}{4}\)
Dấu "=" xảy ra khi \(a=b=c\)
\(bc\le\dfrac{\left(b+c\right)^2}{4}\Rightarrow\dfrac{bc}{a^2+1}\le\dfrac{\left(b+c\right)^2}{4\left(a^2+1\right)}\) chứng minh tương tự với mấy cái còn lại ta dc \(\dfrac{bc}{a^2+1}+\dfrac{ac}{b^2+1}+\dfrac{ab}{c^2+1}\le\dfrac{1}{4}\left[\dfrac{\left(b+c\right)^2}{a^2+1}+\dfrac{\left(a+c\right)^2}{b^2+1}+\dfrac{\left(a+b\right)^2}{c^2+1}\right]\) .Thay a^2 +b^2 +c^2 =1 vào vế phải ta dc\(VT\le\dfrac{1}{4}\left[\dfrac{\left(b+c\right)^2}{2a^2+b^2+c^2}+\dfrac{\left(a+c\right)^2}{2b^2+c^2+a^2}+\dfrac{\left(a+b\right)^2}{2c^2+a^2+b^2}\right]\)
áp dụng bunhiacopski dạng phân thức ta dc\(VT\le\dfrac{1}{4}\left[\dfrac{b^2}{a^2+b^2}+\dfrac{c^2}{a^2+c^2}+\dfrac{a^2}{b^2+a^2}+\dfrac{c^2}{b^2+c^2}+\dfrac{a^2}{c^2+a^2}+\dfrac{b^2}{c^2+b^2}\right]\) \(VT\le\dfrac{1}{4}\left[\dfrac{a^2+b^2}{a^2+b^2}+\dfrac{c^2+a^2}{c^2+a^2}+\dfrac{c^2+b^2}{c^2+b^2}\right]\) \(\Rightarrow VT\le\dfrac{1}{4}\left(1+1+1\right)=\dfrac{3}{4}\left(đpcm\right)\)
Giả sử \(c\le1\).
Khi đó: \(ab+bc+ca-abc=ab\left(1-c\right)+c\left(a+b\right)\ge0\)
\(\Rightarrow ab+bc+ca\ge abc\left(1\right)\)
Đẳng thức xảy ra chẳng hạn với \(a=2,b=c=0\).
Theo giả thiết:
\(4=a^2+b^2+c^2+abc\ge2ab+c^2+abc\)
\(\Leftrightarrow ab\left(c+2\right)\le4-c^2\)
\(\Leftrightarrow ab\le2-c\)
Trong ba số \(\left(a-1\right),\left(b-1\right),\left(c-1\right)\) luôn có hai số cùng dấu.
Không mất tính tổng quát, giả sử \(\left(a-1\right)\left(b-1\right)\ge0\).
\(\Rightarrow ab-a-b+1\ge0\)
\(\Leftrightarrow ab\ge a+b-1\)
\(\Leftrightarrow abc\ge ca+bc-c\)
\(\Rightarrow abc+2\ge ca+bc+2-c\ge ab+bc+ca\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\Rightarrow\) Bất đẳng thức được chứng minh.
Đặt \(P=a^2+b^2+c^2+ab+bc+ca\)
\(P=\dfrac{1}{2}\left(a+b+c\right)^2+\dfrac{1}{2}\left(a^2+b^2+c^2\right)\)
\(P\ge\dfrac{1}{2}\left(a+b+c\right)^2+\dfrac{1}{6}\left(a+b+c\right)^2=6\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Sửa đề: Chứng minh: \(2\le\frac{a^2+b^2+c^2}{a+b+c}+ab+bc+ca\le4\)
Đặt \(a+b+c=3u;ab+bc+ca=3v^2\)
\(\Rightarrow3\left(9u^2-6v^2\right)+3v^2=12\Rightarrow9u^2-6v^2+v^2=4\) (1)
\(\Rightarrow a^2+b^2+c^2=9u^2-6v^2=4-v^2\). Mặt khác từ (1) ta cũng suy ra:
\(\left(3u\right)^2=9u^2=4+5v^2\Rightarrow a+b+c=3u=\sqrt{4+5v^2}\)
Từ giả thiết ta có: \(12=3\left(a^2+b^2+c^2\right)+ab+bc+ca\ge4\left(ab+bc+ca\right)\)
\(\Rightarrow3v^2=ab+bc+ca\le3\Rightarrow0\le v\le1\) (vì \(v=\sqrt{\frac{ab+bc+ca}{3}}\ge0\)..)
Vì vậy ta cần chứng minh: \(2\le f\left(v\right)=\frac{4-v^2}{\sqrt{4+5v^2}}+3v^2\le4\) với \(0\le v\le1\)
Dễ thấy hàm số này đồng biến vì vậy f(v) đạt min tại v = 0 tức \(f\left(v\right)_{min}=2\)
Đạt Max tại v = 1 tức \(f\left(v\right)_{max}=4\)
Ta có đpcm.
P/s: Em mới học BĐT nên không chắc đâu, nhất là khúc mà em in đậm ấy.
Quên:
\(f\left(v\right)_{min}=2\Leftrightarrow\left(a;b;c\right)=\left(2;0;0\right)\) và các hoán vị.
\(f\left(v\right)_{max}=4\Leftrightarrow a=b=c=1\)