Cho các số thực không âm a,b thỏa mãn: \(\left(a-b\right)^2=a+b+2\)
CMR: \(\left(1+\frac{a^3}{\left(b+1\right)^3}\right)\left(1+\frac{b^3}{\left(a+1\right)^3}\right)\le9\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(GT\Leftrightarrow a^2+b^2-2ab=a+b+2\)
\(\Leftrightarrow a^2+a+b^2+b=2\left(ab+a+b+1\right)\)
\(\Leftrightarrow a\left(a+1\right)+b\left(b+1\right)=2\left(a+1\right)\left(b+1\right)\)
\(\Leftrightarrow\dfrac{a}{b+1}+\dfrac{b}{a+1}=2\)
Đặt \(\left(\dfrac{a}{b+1};\dfrac{b}{a+1}\right)=\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}x;y\ge0\\x+y=2\end{matrix}\right.\)
\(\Rightarrow0\le xy\le1\)
\(P=\left(1+x^3\right)\left(1+y^3\right)=1+x^3+y^3+x^3y^3\)
\(P=1+\left(x+y\right)^3-3xy\left(x+y\right)+\left(xy\right)^3\)
\(P=\left(xy\right)^3-6xy+9=xy\left[\left(xy\right)^2-6\right]+9\le9\)
Dấu "=" xảy ra khi \(xy=0\Leftrightarrow\left(a;b\right)=\left(0;2\right);\left(2;0\right)\)
Áp dụng bất đẳng thức AM-GM cho 3 số :
\(\frac{a^3}{\left(b+1\right)\left(c+1\right)}+\frac{b+1}{8}+\frac{c+1}{8}\ge3\sqrt[3]{\frac{a^3\left(b+1\right)\left(c+1\right)}{\left(b+1\right)\left(c+1\right)8^2}}=\frac{3a}{4}\)
Tương tự ta có \(\frac{b^3}{\left(c+1\right)\left(a+1\right)}+\frac{c+1}{8}+\frac{a+1}{8}\ge\frac{3b}{4}\)
\(\frac{c^3}{\left(a+1\right)\left(b+1\right)}+\frac{a+1}{8}+\frac{b+1}{8}\ge\frac{3c}{4}\)
Cộng theo vế các bđt trên ta được :
\(VT+2\left(\frac{a}{8}+\frac{b}{8}+\frac{c}{8}+\frac{3}{8}\right)\ge\frac{3}{4}\left(a+b+c\right)\)
\(< =>VT\ge\frac{3}{4}\left(a+b+c\right)-\frac{1}{4}\left(a+b+c\right)-\frac{6}{8}\)
\(=\frac{1}{2}\left(a+b+c\right)-\frac{6}{8}\ge\frac{1}{2}.3\sqrt[3]{abc}-\frac{6}{8}=\frac{12-6}{8}=\frac{6}{8}=\frac{3}{4}\)
Dấu "=" xảy ra \(< =>a=b=c=1\)
Done !
Áp dụng giả thiết và một đánh giá quen thuộc, ta được: \(16\left(a+b+c\right)\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ca}{abc}=\frac{\left(ab+bc+ca\right)^2}{abc\left(ab+bc+ca\right)}\ge\frac{3\left(a+b+c\right)}{ab+bc+ca}\)hay \(\frac{1}{6\left(ab+bc+ca\right)}\le\frac{8}{9}\)
Đến đây, ta cần chứng minh \(\frac{1}{\left(a+b+\sqrt{2\left(a+c\right)}\right)^3}+\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}+\frac{1}{\left(c+a+\sqrt{2\left(c+b\right)}\right)^3}\le\frac{1}{6\left(ab+bc+ca\right)}\)
Áp dụng bất đẳng thức Cauchy cho ba số dương ta có \(a+b+\sqrt{2\left(a+c\right)}=a+b+\sqrt{\frac{a+c}{2}}+\sqrt{\frac{a+c}{2}}\ge3\sqrt[3]{\frac{\left(a+b\right)\left(a+c\right)}{2}}\)hay \(\left(a+b+\sqrt{2\left(a+c\right)}\right)^3\ge\frac{27\left(a+b\right)\left(a+c\right)}{2}\Leftrightarrow\frac{1}{\left(a+b+2\sqrt{a+c}\right)^3}\le\frac{2}{27\left(a+b\right)\left(a+c\right)}\)
Hoàn toàn tương tự ta có \(\frac{1}{\left(b+c+2\sqrt{b+a}\right)^3}\le\frac{2}{27\left(b+c\right)\left(b+a\right)}\); \(\frac{1}{\left(c+a+2\sqrt{c+b}\right)^3}\le\frac{2}{27\left(c+a\right)\left(c+b\right)}\)
Cộng theo vế các bất đẳng thức trên ta được \(\frac{1}{\left(a+b+\sqrt{2\left(a+c\right)}\right)^3}+\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}+\frac{1}{\left(c+a+\sqrt{2\left(c+b\right)}\right)^3}\le\frac{4\left(a+b+c\right)}{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)Phép chứng minh sẽ hoàn tất nếu ta chỉ ra được \(\frac{4\left(a+b+c\right)}{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\frac{1}{6\left(ab+bc+ca\right)}\)\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\frac{8}{9}\left(ab+bc+ca\right)\left(a+b+c\right)\)
Đây là một đánh giá đúng, thật vậy: đặt a + b + c = p; ab + bc + ca = q; abc = r thì bất đẳng thức trên trở thành \(pq-r\ge\frac{8}{9}pq\Leftrightarrow\frac{1}{9}pq\ge r\)*đúng vì \(a+b+c\ge3\sqrt[3]{abc}\); \(ab+bc+ca\ge3\sqrt[3]{\left(abc\right)^2}\))
Vậy bất đẳng thức được chứng minh
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{4}\)
Ta có \(ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\)\(\Rightarrow3\sqrt[3]{a^2b^2c^2}\le3\Leftrightarrow abc\le1\)
\(\Rightarrow\)\(\frac{1}{1+a^2\left(b+c\right)}\le\frac{1}{abc+a^2\left(b+c\right)}\)\(=\frac{1}{a\left(ab+bc+ca\right)}=\frac{1}{3a}\)
\(CMTT\Rightarrow\frac{1}{1+b^2\left(c+a\right)}\le\frac{1}{3b}\)
\(\frac{1}{1+c^2\left(a+b\right)}\le\frac{1}{3c}\)
\(\Rightarrow VT\le\frac{1}{3a}+\frac{1}{3b}+\frac{1}{3c}\)\(=\frac{ab+bc+ca}{3abc}=\frac{1}{abc}\)
Không mất tính tổng quát, giả sử \(a\ge b\).
Đặt \(a+b=2x;a-b=2y\) thì \(x,y\ge0\) và \(a=x+y;b=x-y\) (1)
Theo đề bài: \(2x+2=4y^2\Rightarrow x=2y^2-1\ge0\)(*). Thay vào (1) thu được: \(a=2y^2+y-1;b=2y^2-y-1\)
Vì \(b\ge0\Rightarrow2y^2-y-1\ge0\) (do trên) (**)
\(\Leftrightarrow\left(y-1\right)\left(2y+1\right)\ge0\Leftrightarrow y\ge1\)
Vậy ta cần chứng minh:\(\left[1+\frac{\left(2y^2+y-1\right)^3}{\left(2y^2-y\right)^3}\right]\left[1+\frac{\left(2y^2-y-1\right)^3}{\left(2y^2+y\right)^3}\right]\le9\)
\(\Leftrightarrow\frac{\left(1-y\right)\left(y+1\right)\left(5y^4+2y^2-1\right)}{y^6}\le0\)
\(\Leftrightarrow\left(1-y\right)\left(5y^4+2y^2-1\right)\le0\)
\(\Leftrightarrow\left(1-y\right)\left[\frac{1}{4}\left(2y^2-1\right)\left(10y^2+9\right)+\frac{5}{4}\right]\le0\)
Cái ngoặc vuông > 0 (do (*) ). Nên ta chỉ cần chứng minh: \(1-y\le0\Leftrightarrow y\ge1\)(hiển nhiên đúng theo (**) )
Đẳng thức xảy ra khi \(\left(a;b\right)=\left\{\left(2;0\right),\left(0;2\right)\right\}\)
Dành cho ai không muốn giả sử:
Nếu không muốn giả sử thì mọi người có thể xét hai trường hợp!
+) Nếu \(a\ge b\) thì giải như trên.
+) Nếu \(a\le b\). Đặt \(a+b=2x;b-a=2y\Rightarrow b=x+y;a=x-y\)
Cách giải tương tự.