Cho các số dương a,b,c thỏa mãn ab + bc + ca = 1. Tìm GTLN của biểu thức:
\(P=\frac{2a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}-a^2-28b^2-28c^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(7\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=6\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)+3\ge7\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)
\(\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\le3\)Áp dụng BĐT AM-GM ta có :
\(A=\frac{1}{\sqrt{a^3+b^3+1}}+\frac{1}{\sqrt{b^3c^3+1+1}}+\frac{4\sqrt{3}}{c^6+1+2a^3+8}\)
\(\le\frac{1}{\sqrt{3ab}}+\frac{1}{\sqrt{3bc}}+\frac{4\sqrt{3}}{2c^3+2a^3+8}=\frac{1}{\sqrt{3ab}}+\frac{1}{\sqrt{3bc}}+\frac{2\sqrt{3}}{c^3+a^3+4}\)
\(=\frac{1}{\sqrt{3ab}}+\frac{1}{\sqrt{3bc}}+\frac{2\sqrt{3}}{c^3+a^3+1+1+1+1}\)
\(\le\frac{1}{\sqrt{3ab}}+\frac{1}{\sqrt{3bc}}+\frac{2\sqrt{3}}{6\sqrt{ac}}=\frac{1}{\sqrt{3ab}}+\frac{1}{\sqrt{3bc}}+\frac{1}{\sqrt{3ac}}\)\(=\frac{1}{\sqrt{3}}\left(\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{ac}}+\frac{1}{\sqrt{bc}}\right)\)
\(\le\frac{1}{\sqrt{3}}\sqrt{3\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\right)}=\sqrt{\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\right)}\le\sqrt{3}\) (Bunhiacopxki)
Dấu "=" xảy ra\(\Leftrightarrow a=b=c=1\)
PS : Thánh cx đc phết ha; chế đc bài này tui mới khâm phục :)))
nó ko chém đâu anh nó chép trong toán tuổi thơ đấy,thk này khốn nạn lắm
Với ab + bc + ca = 1 thì:
\(Q=\frac{2a}{\sqrt{a^2+1}}+\frac{b}{\sqrt{b^2+1}}+\frac{c}{\sqrt{c^2+1}}=\)\(\frac{2a}{\sqrt{a^2+ab+bc+ca}}+\frac{b}{\sqrt{b^2+ab+bc+ca}}+\frac{c}{\sqrt{c^2+ab+bc+ca}}\)
\(=\frac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(b+a\right)\left(b+c\right)}}+\frac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)
\(=\sqrt{\frac{2a}{a+b}.\frac{2a}{a+c}}+\sqrt{\frac{2b}{a+b}.\frac{b}{2\left(b+c\right)}}+\sqrt{\frac{2c}{a+c}.\frac{c}{2\left(b+c\right)}}\)
\(\le\frac{\frac{2a}{a+b}+\frac{2a}{a+c}}{2}+\frac{\frac{2b}{a+b}+\frac{b}{2\left(b+c\right)}}{2}+\frac{\frac{2c}{a+c}+\frac{c}{2\left(b+c\right)}}{2}\)(Theo BĐT Cô - si)
\(=\frac{\frac{2\left(a+b\right)}{a+b}+\frac{b+c}{2\left(b+c\right)}+\frac{2\left(a+c\right)}{a+c}}{2}=\frac{2+\frac{1}{2}+2}{2}=\frac{9}{4}\)
Đẳng thức xảy ra khi a = b = c = 1
\(Q=\frac{a}{\sqrt{a^2+1}}+\frac{b}{\sqrt{b^2+1}}+\frac{c}{\sqrt{c^2+1}}\) chứ?
Ta có:\(7\left(\frac{1}{a^2}+...\right)=6\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)+2015\)
Mà \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\le\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)
=> \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\le2015\)=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le\sqrt{6045}\)
\(P=\frac{1}{\sqrt{3\left(2a^2+b^2\right)}}+...\)
Mà \(\left(2+1\right)\left(2a^2+b^2\right)\ge\left(2a+b\right)^2\)(bất dẳng thức buniacoxki)
=> \(P\le\frac{1}{2a+b}+\frac{1}{2b+c}+\frac{1}{2c+a}\)
Lại có \(\frac{1}{2a+b}=\frac{1}{a+a+b}\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}\right)\)
=> \(P\le\frac{1}{9}\left(\frac{3}{a}+\frac{3}{b}+\frac{3}{c}\right)\le\frac{\sqrt{6045}}{3}\)
Vậy \(MaxP=\frac{\sqrt{6045}}{3}\)khi \(a=b=c=\frac{\sqrt{6045}}{2015}\)
gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)
=> Thay vào thì \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)
\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)
Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào
=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)
=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)
=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\)
1.Ta có: \(c+ab=\left(a+b+c\right)c+ab\)
\(=ac+bc+c^2+ab\)
\(=a\left(b+c\right)+c\left(b+c\right)\)
\(=\left(b+c\right)\left(a+b\right)\)
CMTT \(a+bc=\left(c+a\right)\left(b+c\right)\)
\(b+ca=\left(b+c\right)\left(a+b\right)\)
Từ đó \(P=\sqrt{\frac{ab}{\left(a+b\right)\left(b+c\right)}}+\sqrt{\frac{bc}{\left(c+a\right)\left(a+b\right)}}+\sqrt{\frac{ca}{\left(b+c\right)\left(a+b\right)}}\)
Ta có: \(\sqrt{\frac{ab}{\left(a+b\right)\left(b+c\right)}}\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{b+c}\right)\)( theo BĐT AM-GM)
CMTT\(\Rightarrow P\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}+\frac{b}{a+b}+\frac{c}{b+c}+\frac{a}{a+b}\right)\)
\(\Rightarrow P\le\frac{1}{2}.3\)
\(\Rightarrow P\le\frac{3}{2}\)
Dấu"="xảy ra \(\Leftrightarrow a=b=c\)
Vậy /...
\(\frac{a+1}{b^2+1}=a+1-\frac{ab^2-b^2}{b^2+1}=a+1-\frac{b^2\left(a+1\right)}{b^2+1}\ge a+1-\frac{b^2\left(a+1\right)}{2b}\)
\(=a+1-\frac{b\left(a+1\right)}{2}=a+1-\frac{ab+b}{2}\)
Tương tự rồi cộng lại:
\(RHS\ge a+b+c+3-\frac{ab+bc+ca+a+b+c}{2}\)
\(\ge a+b+c+3-\frac{\frac{\left(a+b+c\right)^2}{3}+a+b+c}{2}=3\)
Dấu "=" xảy ra tại \(a=b=c=1\)
\(P=\frac{ab}{\sqrt{\left(c+a\right)\left(b+c\right)}}+\frac{bc}{\sqrt{\left(c+a\right)\left(a+b\right)}}+\frac{ca}{\sqrt{\left(b+c\right)\left(a+b\right)}}\)
thử dùng cô si đi
Bài toán quy về 2 bài toán nhỏ hơn!
Cho các số dương ab + bc +ca = 1.
a) Tìm Max: \(M=\frac{2a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}\)
(Lời giải tại: Câu hỏi của Nguyễn Linh Chi. Bài làm của anh Thắng, trong lời giải có phần giống với đề bên trên.)
b) Tìm Min: \(N=a^2+28b^2+28c^2\)
Có: \(N=\frac{1}{4}\left(2a-7b-7c\right)^2+\frac{63}{4}\left(b-c\right)^2+7\left(ab+bc+ca\right)\ge7\left(ab+bc+ca\right)=7\)
Từ đó tìm được \(P\le\frac{9}{4}-7=-\frac{19}{4}\)
Đẳng thức xảy ra khi \(a=\frac{7}{\sqrt{15}};b=c=\frac{1}{\sqrt{15}}\)
Với ab + bc + ca = 1 và áp dụng BĐT AM - GM, ta được:
\(\frac{2a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}\)\(\frac{2a}{\sqrt{a^2+ab+bc+ca}}+\frac{b}{\sqrt{b^2+ab+bc+ca}}+\frac{c}{\sqrt{c^2+ab+bc+ca}}\)
\(=\frac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(b+a\right)\left(b+c\right)}}+\frac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)
\(=\sqrt{\frac{2a}{a+b}.\frac{2a}{a+c}}+\sqrt{\frac{2b}{a+b}.\frac{b}{2\left(b+c\right)}}+\sqrt{\frac{2c}{a+c}.\frac{c}{2\left(b+c\right)}}\)
\(\le\frac{\frac{2a}{a+b}+\frac{2a}{a+c}}{2}+\frac{\frac{2b}{a+b}+\frac{b}{2\left(b+c\right)}}{2}+\frac{\frac{2c}{a+c}+\frac{c}{2\left(b+c\right)}}{2}\)
\(=\frac{\frac{2\left(a+b\right)}{a+b}+\frac{2\left(a+c\right)}{a+c}+\frac{b+c}{2\left(b+c\right)}}{2}=\frac{2+2+\frac{1}{2}}{2}=\frac{9}{4}\)(*)
Mặt khác, cũng theo AM - GM, ta có:
\(\frac{a^2}{2}+\frac{49b^2}{2}\ge2\sqrt{\frac{a^2}{2}.\frac{49b^2}{2}}=7ab\)(1)
\(\frac{a^2}{2}+\frac{49c^2}{2}\ge2\sqrt{\frac{a^2}{2}.\frac{49c^2}{2}}=7ac\)(2)
\(\frac{7}{2}\left(b^2+c^2\right)\ge\frac{7}{2}.2\sqrt{b^2c^2}=7bc\)(3)
Cộng theo từng vế của 3 BĐT (1), (2), (3), ta được:
\(\frac{2a^2+56b^2+56c^2}{2}\ge7\left(ab+bc+ca\right)=7\)
hay \(a^2+28b^2+28c^2\ge7\)(**)
Từ (*) và (**) suy ra \(P=\frac{2a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}-a^2-28b^2-28c^2\)
\(\le\frac{9}{4}-7=\frac{-19}{4}\)
Đẳng thức xảy ra khi \(a=\frac{7}{\sqrt{15}};b=c=\frac{1}{\sqrt{15}}\)