Chứng minh bất đẳng thức
\(\frac{x}{2x+y+z}+\frac{y}{2y+z+x}+\frac{z}{2z+x+y}\le\frac{3}{4}\)
Con này mất dạy v:, chuyện đó tính sau
肖战 - Trang của 肖战 - Học toán với OnlineMath
Nó copy dữ dội trên này lắm
Câu hỏi của 凯原 - Ngữ Văn lớp 7 - Học toán với OnlineMath
Câu hỏi của Phương' ss ngốc - Ngữ Văn lớp 7 - Học toán với OnlineMath
Câu hỏi của Khanh Linh Ha - Toán lớp 7 - Học toán với OnlineMath
Câu hỏi của kudoshinichi - Tiếng Việt lớp 5 - Học toán với OnlineMath
Còn nhiù nhưng ko có t/g để cop
Anh ơi bài này cô em dạy là dùng Schwarz ạ:))
\(\frac{x}{2x+y+z}=\frac{x}{\left(x+z\right)+\left(x+y\right)}\le\frac{x}{4}\left(\frac{1}{x+z}+\frac{1}{x+y}\right)=\frac{x}{4\left(x+z\right)}+\frac{x}{4\left(x+y\right)}\)
Tương tự rồi cộng lại:
\(LSH\le\frac{3}{4}=RHS\)