Giải và biện luận pt :
\(m\left(m-1\right)x=m^2+3m+2\left(x+1\right)\)
\(\left(1-m\right)x=m^2-1\)
\(\left(m^2-5m+6\right)x=m^2-9\)
Help Salahhh <3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với \(m=-1\Leftrightarrow4x+1=0\Leftrightarrow x=-\dfrac{1}{4}\)
Với \(m=1\Leftrightarrow1=0\Leftrightarrow x\in\varnothing\)
Với \(m\ne\pm1\)
\(\Delta=4\left(m-1\right)^2-4\left(m^2+1\right)\\ \Delta=4m^2-8m+4-4m^2-4\\ \Delta=-8m\)
PT vô nghiệm \(\Leftrightarrow-8m< 0\Leftrightarrow m>0\)
PT có nghiệm kép \(\Leftrightarrow-8m=0\Leftrightarrow m=0\)
Khi đó \(x=\dfrac{2\left(m-1\right)}{2\left(m^2-1\right)}=\dfrac{1}{m+1}\)
PT có 2 nghiệm phân biệt \(\Leftrightarrow-8m>0\Leftrightarrow m< 0\)
Khi đó \(\left[{}\begin{matrix}x_1=\dfrac{2\left(m-1\right)-\sqrt{-8m}}{2\left(m^2-1\right)}\\x_2=\dfrac{2\left(m-1\right)+\sqrt{-8m}}{2\left(m^2+1\right)}\end{matrix}\right.\)
Ta có :
\(\frac{m^2\left[\left(x+2\right)^2-\left(x-2\right)^2\right]}{8}-4x=\left(m-1\right)^2+3\left(2m+1\right)\)
\(\Leftrightarrow m^2x-4x=m^2+4m+4\)
\(\Leftrightarrow\left(m-2\right)\left(m+2\right)x=\left(m+2\right)^2\)
- Nếu \(m\ne\pm2\) thì \(x=\frac{m+2}{m-2}\)
- Nếu \(m=2\) thì \(0x=16\)
=> P/trình vô nghiệm .
- Nếu \(m=-2\) thì \(0x=0\)
=> PT có nghiệm bất kì
.....
a) \(\left|2x-5m\right|=2x-3m\)
Điều kiện có nghiệm của phương trình là: \(2x-3m\ge0\)\(\Leftrightarrow x\ge\dfrac{3m}{2}\). (1)
pt\(\Leftrightarrow\left[{}\begin{matrix}2x-5m=2x-3m\\2x-5m=-\left(2x-3m\right)\end{matrix}\right.\).
Th1. \(2x-5m=2x-3m\Leftrightarrow-5m=-3m\)\(\Leftrightarrow m=0\).
Thay \(m=0\) vào phương trình ta có: \(\left|2x\right|=2x\) (*)
Dễ thấy (*) có tập nghiệm là: \(\left[0;+\infty\right]\) (Thỏa mãn (1)).
Th2. \(2x-5m=-\left(2x-3m\right)\)\(\Leftrightarrow2x-5m=-2x+3m\)
\(\Leftrightarrow4x=8m\)\(\Leftrightarrow x=2m\).
Để \(x=2m\) là nghiệm của phương trình thì:
\(2m\ge\dfrac{3}{2}m\)\(\Leftrightarrow m\ge0\).
Biện luận:
Với m = 0 phương trình có tập nghiệm là: \(\left[0;+\infty\right]\).
Với \(m>0\) phương trình có nghiệm duy nhất \(x=2m\).
Với m < 0 phương trình vô nghiệm.
b)TXĐ: D = R
\(\left|3x+4m\right|=\left|4x-7m\right|\)\(\Leftrightarrow\left[{}\begin{matrix}3x+4m=4x-7m\\3x+4m=-\left(4x-7m\right)\end{matrix}\right.\)
Th1. \(3x+4m=4x-7m\)\(\Leftrightarrow x=11m\)
Th2. \(3x+4m=-4x+7m\) \(\Leftrightarrow7x=3m\)\(\Leftrightarrow x=\dfrac{3m}{7}\).
Biện luận:
Với mọi giá trị \(m\in R\) phương trình luôn có hai nghiệm:
\(x=11m\) hoặc \(x=\dfrac{3m}{7}\).
\(\Delta'=\left(m-1\right)^2-\left(m^2+3m\right)=-5m+1\)
- Với \(m\ge\dfrac{1}{5}\Rightarrow\Delta'\le0\) bpt nghiệm đúng với mọi x hay tập nghiệm là \(D=R\)
- Với \(m< \dfrac{1}{5}\Rightarrow\Delta'>0\) bpt nghiệm pb: \(1-m-\sqrt{-5m+1}\le x\le1-m+\sqrt{-5m+1}\)
\(\frac{m^2\left[\left(x+2\right)^2-\left(x-2\right)^2\right]}{8}-4x=\left(m-1\right)^2+3\left(2m+1\right)\)
\(\Leftrightarrow\frac{m^2\left(x^2+4x+4-x^2+4x-4\right)}{8}-4x=\)\(m^2-2m+1+6m+3\)
\(\Leftrightarrow\frac{m^2.8x}{8}-4x=m^2+4m+4\)
\(\Leftrightarrow m^2x-4x=m^2+4m+4\)
\(\Leftrightarrow x\left(m^2-4\right)=\left(m+2\right)^2\) \(\left(1\right)\)
+) Nếu \(m^2-4\ne0\Leftrightarrow m^2\ne4\Leftrightarrow m\ne\pm2\)
Phương trình có nghiệm duy nhất \(x=\frac{\left(m+2\right)^2}{m^2-4}=\frac{\left(m+2\right)^2}{\left(m+2\right)\left(m-2\right)}=\frac{m+2}{m-2}\)
+) Nếu \(m=2\)
\(\left(1\right)\Leftrightarrow x\left(2^2-4\right)=\left(2+2\right)^2\)
\(\Leftrightarrow0=16\) ( vô lí )
\(\Rightarrow\)Phương trình trên vô nghiệm
+) Nếu \(m=-2\)
\(\left(1\right)\Leftrightarrow x\left[\left(-2\right)^2-4\right]=\left(-2+2\right)^2\)
\(\Leftrightarrow0=0\)( đúng )
\(\Rightarrow\)Phương trình có nghiệm đúng với mọi x
Vậy : - Nếu \(m\ne\pm2\)phương trình có nghiệm duy nhất \(x=\frac{m+2}{m-2}\)
- Nếu m = 2 thì phương trình vô nghiệm
- Nếu m = -2 thì phương trình có nghiệm đúng với mọi x
a) \(m\left(m-6\right)x+m=-8x+m^2-2\)
\(\Leftrightarrow x\left(m^2-6m+8\right)=m^2-m-2\)
- Xét \(m^2-6m+8=0\Leftrightarrow\left[{}\begin{matrix}m=4\\m=2\end{matrix}\right.\)
Th1. Thay \(m=4\) vào phương trình ta có:
\(0.x=10\) (vô nghiệm)
Th2. Thay \(m=2\) vào phương trình ta có:
\(0.x=0\) (luôn đúng với mọi \(x\in R\))
- Xét: \(m^2-6m+8\ne0\Leftrightarrow\left\{{}\begin{matrix}m\ne4\\m\ne2\end{matrix}\right.\)
Khi đó phương trình có nghiệm duy nhất là:
\(x=\dfrac{m^2-m-2}{m^2-6m+8}\)
Biện luận:
- \(m=4\) phương trình vô nghiệm.
- \(m=2\) phương trình luôn có nghiệm.
- \(m\ne4\) và \(m\ne2\) phương trình có nghiệm duy nhất là:
\(x=\dfrac{m^2-m-2}{m^2-6m+8}\)
b) Đkxđ: \(x\ne-1\)
\(\dfrac{\left(m-x\right)x+3}{x+1}=2m-1\)\(\Leftrightarrow\left(m-x\right)x+3=\left(2m-1\right)\left(x+1\right)\) \(\Leftrightarrow-x^2+x\left(1-m\right)+4-2m=0\) (*)
Xét (*) có nghiệm \(x=-1\) .
Khi đó: \(-\left(-1\right)^2+\left(-1\right)\left(1-m\right)+4-2m=0\)\(\Leftrightarrow m=2\)
Xét \(m=2\) thay vào phương trình ta có:
\(\dfrac{\left(2-x\right)x+3}{x+1}=2.2-1\Leftrightarrow\left\{{}\begin{matrix}-x^2+2x+3=0\\x\ne-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\\x\ne-1\end{matrix}\right.\)\(\Leftrightarrow x=3\)
Vậy với m = 2 thì phương trình có nghiệm x = 3.
Xét \(m\ne2\)
\(\Delta=\left(1-m\right)^2-4.\left(-1\right).\left(4-2m\right)=\)\(m^2-10m+17\)
Nếu \(\Delta=0\Leftrightarrow m^2-10m+17=0\)\(\Leftrightarrow\left[{}\begin{matrix}m=5+2\sqrt{2}\\m=5-2\sqrt{2}\end{matrix}\right.\)
Phương trình có nghiệm kép:
\(x_1=x_2=\dfrac{1-m}{2}=\dfrac{1-\left(5+2\sqrt{2}\right)}{2}=-2-\sqrt{2}\left(\ne-1\right)\) nếu \(m=5+2\sqrt{2}\).
\(x_1=x_2=\dfrac{1-m}{2}=\dfrac{1-\left(5-2\sqrt{2}\right)}{2}=-2+\sqrt{2}\left(\ne-1\right)\) nếu \(m=5-2\sqrt{2}\).
Nếu \(\Delta>0\Leftrightarrow m^2-10m+17>0\)\(\Leftrightarrow\left(m-5+2\sqrt{2}\right)\left(m-5-2\sqrt{2}>0\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}m>5+2\sqrt{2}\\m< 5-2\sqrt{2}\end{matrix}\right.\) thì phương trình có hai nghiệm phân biệt là:
\(x_1=\dfrac{-\left(1-m\right)+\sqrt{m^2-10m+17}}{-2}\)
\(x_1=\dfrac{-\left(1-m\right)-\sqrt{m^2-10m+17}}{-2}\)
Biện luận:
Nếu \(\Delta< 0\Leftrightarrow5-2\sqrt{2}< m< 5+2\sqrt{2}\) thì phương trình vô nghiệm.
Biện luận:
Với \(m=5-2\sqrt{2}\) thì phương trình có nghiệm kép là:
\(x_1=x_2=\dfrac{1-m}{2}=\dfrac{1-\left(5-2\sqrt{2}\right)}{2}=-2+\sqrt{2}\)
Với \(m=5-2\sqrt{2}\) thì phương trình có nghiệm kép là:
\(x_1=x_2=\dfrac{1-m}{2}=\dfrac{1-\left(5+2\sqrt{2}\right)}{2}=-2-\sqrt{2}\)
Với m = 2 thì phương trình có duy nhất nghiệm là: x = 3
Với \(m>5+2\sqrt{2}\) hoặc \(m< 5-2\sqrt{2}\) thì phương trình có hai nghiệm phân biệt:
\(x_1=\dfrac{-\left(1-m\right)+\sqrt{m^2-10m+17}}{-2}\);
\(x_1=\dfrac{-\left(1-m\right)-\sqrt{m^2-10m+17}}{-2}\)
Với \(5-2\sqrt{2}< m< 5+2\sqrt{2}\) và \(m\ne2\) thì phương trình vô nghiệm.
a: Để phương trình có nghiệm duy nhất thì \(\left(m-3\right)\left(m+2\right)\ne0\)
hay \(m\notin\left\{3;-2\right\}\)
Để phương trình có vô số nghiệm thì \(m-3=0\)
hay m=3
Để phương trình vô nghiệm thì \(\left\{{}\begin{matrix}\left(m-3\right)\left(m+2\right)=0\\m^2-4m+3< >0\end{matrix}\right.\Leftrightarrow m=-2\)