K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
1 tháng 7 2020

Lời giải:

$x^{2020}+x^{1001}+1=(x^{2020}-x)+(x^{1001}-x^2)+x^2+x+1$

$=x(x^{2019}-1)+x^2(x^{999}-1)+x^2+x+1$

Ta thấy:

$x^{2019}-1=(x^3)^{673}-1=(x^3-1).A(x)=(x-1)(x^2+x+1)A(x)$

$x^{999}-1=(x^3)^{333}-1=(x^3-1)B(x)=(x-1)(x^2+x+1)B(x)$

Do đó:

$x^{2020}+x^{1001}+1=(x^2+x+1)[x(x-1)A(x)+x^2(x-1)B(x)+1]$

Do đó phép chia $x^{2020}+x^{1001}+1$ cho $x^2+x+1$ dư $0$

15 tháng 1 2023

Tìm x:

a) x chia hết cho 3 và 625 < x < 635

Trả lời: x có thể là:627,630,633.

(tại vì: 6+2+7=15 ; 6+3+0=9 ; 6+3+3=12)

b) x chia hết cho 9 và 790 < x < 808

Trả lời:x có thể là:792,801.

(vì 7+9+2=18 ; 8+0+1=9)

c) x vừa chia hết cho 2 vừa chia hết cho 3 và 2002 < x < 2020

Trả lời: x có thể là: 2004,2010,2016.

(vì 2+0+0+4=6 ; 2+0+1+0=3 ; 2+0+1+6=9)

17 tháng 4 2022

Mình có nghĩ ra cách này mọi người xem giúp mình với

f(x) = \(ax^2+bx+c\) 

Ta có f(0) = 2 => c = 2

Ta đặt Q(x) = \(ax^2+bx+c-2020\)

và G(x) = \(ax^2+bx+c+2021\)

f(x) - 2020 chia cho x - 1 hay Q(x) chia cho x - 1 được số dư

\(R_1\) = Q(1) = \(a.1^2+b.1+c-2020=a+b+c-2020\)  

Mà Q(x) chia hết cho x-1 nên \(R_1\) = 0

hay \(a+b+c-2020=0\). Mà c = 2 => a + b = 2018 (1)

G(x) chia cho x + 1 số dư 

\(R_2\) = G(-1) = \(a.\left(-1\right)^2+b.\left(-1\right)+c+2021=a-b+2+2021\)

Mà G(x) chia hết cho x + 1 nên \(R_2\)=0

hay \(a-b+2+2021=0\) => \(a-b=-2023\) (2)

Từ (1) và (2) suy ra: \(\left\{{}\begin{matrix}a+b=2018\\a-b=-2023\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}a=-\dfrac{5}{2}\\b=\dfrac{4041}{2}\end{matrix}\right.\)

17 tháng 4 2022

ko biết !!!