K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2020

\(\hept{\begin{cases}mx+2my=m+1\\x+\left(m+1\right)y=2\end{cases}}\)

Để PT trên có nghiệm duy nhất:

\(\frac{m}{1}\ne\frac{2m}{m+1}\)

\(\Rightarrow m^2+m\ne2m\)

\(\Rightarrow m^2\ne m\Rightarrow m\ne0;m\ne1\)

\(\hept{\begin{cases}mx+2my=m+1\\x\left(m+1\right)y=2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}mx+2my=m+1\\mx+m\left(m+1\right)y=2m\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}mx+2my=m+1\\2my-m\left(m+1\right)y=m+1-2m\left(#\right)\end{cases}}\)

Từ (#) \(2my-m\left(m+1\right)y=m+1-2m\)

\(\Leftrightarrow2my-m^2y-my=1-m\)

\(\Leftrightarrow my-m^2y=1-m\)

\(\Leftrightarrow y\left(m-m^2\right)=1-m\)

\(\Leftrightarrow y=\frac{1-m}{m-m^2}\)

\(\Leftrightarrow y=\frac{1-m}{m\left(1-m\right)}=\frac{1}{m}\)

Ta có \(x+\left(m+1\right)y=2\)

\(\Leftrightarrow x+\frac{m+1}{m}=2\)

\(\Leftrightarrow x=2-\frac{m+1}{m}=\frac{2m-m-1}{m}=\frac{m-1}{m}\)

=> PT trên ta có 1 nghiệm (x;y) = (m-1/m;1/m)

Ta có \(x+y=\frac{m-1}{m}+\frac{1}{m}=\frac{m}{m}=1\)

\(\Rightarrow y=1-x\)

=>điểm M (x;y) luôn thuộc 1 đường thẳng cố định khi m thay đổi

P/s về câu trường hợp thì mik ko chắc chắn có đúng không, bạn nên hỏi các thầy cô để chắc chắn ạ, sai-ib để mik sửa chữa ạ >:

a) Thay \(m=1\) vào hệ phương trình, ta được:

\(\left\{{}\begin{matrix}3x-y=1\\x+2y=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

  Vậy ...

b) HPT \(\Leftrightarrow\left\{{}\begin{matrix}6x-2y=4m-2\\x+2y=3m+2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}7x=7m\\y=2m-1-3x\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=m\\y=-m-1\end{matrix}\right.\)

Ta có: \(x^2+y^2=5\) 

\(\Rightarrow m^2+m^2+2m+1=5\) \(\Leftrightarrow m^2+m-2=0\) \(\Rightarrow\left[{}\begin{matrix}m=1\\m=-2\end{matrix}\right.\)

  Vậy ...

c) Hệ phương trình luôn có nghiệm duy nhất

Ta có: \(x-3y>0\)

\(\Rightarrow m-3\left(-m-1\right)>0\)

\(\Leftrightarrow4m+3>0\) \(\Leftrightarrow m>-\dfrac{3}{4}\)

  Vậy ...