cho a,b,c khac 0 thoan man:
\(\frac{ab}{a+b}\) + \(\frac{bc}{b+c}\)+ \(\frac{ca}{c+a}\)
Tinh M = \(\frac{ab+bc+ ca}{a^2+b^2+c^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}=\frac{1}{\frac{1}{a}+\frac{1}{b}}=\frac{1}{\frac{1}{b}+\frac{1}{c}}=\frac{1}{\frac{1}{c}+\frac{1}{a}}\)
\(\frac{1}{a}+\frac{1}{b}=\frac{1}{b}+\frac{1}{c}=\frac{1}{c}+\frac{1}{a}\Leftrightarrow a=b=c\)
=>M = 1
a)\(VT=\sum_{cyc}\frac{ab^3+ab^2c+a^2bc}{\left(a^2+bc+ca\right)\left(b^2+bc+ca\right)}\le\frac{\sum_{cyc}\left(ab^3+ab^2c+a^2bc\right)}{\left(ab+bc+ca\right)^2}\)
\(=\frac{ab^3+bc^3+ca^3+2a^2bc+2ab^2c+2abc^2}{\left(ab+bc+ca\right)^2}\)\(\le\frac{\sum_{cyc}ab\left(a^2+b^2\right)+abc\left(a+b+c\right)}{\left(ab+bc+ca\right)^2}\)
\(=\frac{\left(ab+bc+ca\right)\left(a^2+b^2+c^2\right)}{\left(ab+bc+ca\right)^2}=\frac{a^2+b^2+c^2}{ab+bc+ca}=VP\)
Từ \(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ca}{c+a}\)
\(\Rightarrow\dfrac{a+b}{ab}=\dfrac{b+c}{bc}=\dfrac{c+a}{ca}\)
\(\Rightarrow\dfrac{a}{ab}+\dfrac{b}{ab}=\dfrac{b}{bc}+\dfrac{c}{bc}=\dfrac{c}{ca}+\dfrac{a}{ca}\)
\(\Rightarrow\dfrac{1}{b}+\dfrac{1}{a}=\dfrac{1}{c}+\dfrac{1}{b}=\dfrac{1}{a}+\dfrac{1}{c}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{b}+\dfrac{1}{a}=\dfrac{1}{c}+\dfrac{1}{b}\\\dfrac{1}{c}+\dfrac{1}{b}=\dfrac{1}{a}+\dfrac{1}{c}\\\dfrac{1}{a}+\dfrac{1}{c}=\dfrac{1}{b}+\dfrac{1}{a}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{a}=\dfrac{1}{c}\\\dfrac{1}{b}=\dfrac{1}{a}\\\dfrac{1}{c}=\dfrac{1}{b}\end{matrix}\right.\)
\(\Rightarrow\dfrac{1}{a}=\dfrac{1}{b}=\dfrac{1}{c}\Rightarrow a=b=c\)
Khi đó: \(M=\dfrac{ab+bc+ca}{a^2+b^2+c^2}=\dfrac{1\cdot1+1\cdot1+1\cdot1}{1^2+1^2+1^2}=\dfrac{3}{3}=1\)
Bạn ơi hình như phân thức cuối cùng bạn bị sai bạn thử xem lại đi nha!
Ta có :a+b+c=0
a+b=-c
(a+b)2=(-c)2
a2+b2+2ab=c2
a2+b2-c2+2ab=0
\(\Rightarrow\)a2+b2-c2=-2ab (1)
Tương tự như trên , nên ta có :
b2+c2-a2=-2ab (2)
c2+b2-a2=-2cb (3)
Ta thay (1) , (2) và (3) , vào phân thức trên , ta có :
\(\frac{ab}{-2ab}+\frac{bc}{-2bc}+\frac{ca}{-2cb}\)
\(=-\frac{1}{2}+-\frac{1}{2}+-\frac{1}{2}\)
\(=-\frac{3}{2}\)
Từ \(\frac{ab}{a+b}=\frac{bc}{b+c}\Leftrightarrow\frac{abc}{ac+bc}=\frac{abc}{ab+ac}\Leftrightarrow bc=ab\Rightarrow a=c\)(1)
Tương tựi ta cũng có : \(\hept{\begin{cases}a=b\\b=c\end{cases}}\)(2)
Từ (1);(2) \(\Rightarrow a=b=c\)Thay vào M ta được :\(M=\frac{a.a+a.a+a.a}{a^2+b^2+c^2}=1\)
\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\Rightarrow\frac{abc}{\left(a+b\right).c}=\frac{abc}{a.\left(b+c\right)}=\frac{cab}{\left(c+a\right).b}\)
\(\Leftrightarrow\frac{abc}{ac+bc}=\frac{abc}{ab+ac}=\frac{abc}{bc+ab}\)
=> ac+bc=ab+ac=bc+ab
+) ac+bc=ab+ac=> bc=ab => c=a ( do b khác 0 )
+) ab+ac=bc+ab=> ac=bc => a=b ( do c khác 0 )
=> a=b=c
Khi đó: \(M=\frac{ab+bc+ca}{a^2+b^2+c^2}=\frac{a^2+a^2+a^2}{a^2+a^2+a^2}=1\)