K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2020

Ta có : \(a^2+3a=2\)

           \(b^2+3b=2\)

=> \(\left(a-b\right)\left(a+b\right)+3\left(a-b\right)=0\)

=> \(\left(a-b\right)\left(a+b+3\right)=0\)

=>  a = b ( loại ) hoặc a + b = - 3 ( Thỏa mãn )

Ta có : \(a^2+3a=2\Rightarrow a^3=2a-3a^2\)

           \(b^2+3b=2\Rightarrow b2b-3b^2\)

=> \(a^3+b^3=2a+2b-3\left(2-3a\right)-3\left(2-3b\right)\)

                    \(=11\left(a+b\right)-12=11\left(-3\right)-12=-45\)

5 tháng 8 2016

a)  Ta có : a^2+3a=b^2+3b \(\Leftrightarrow\)(a^2 - b^2) + 3(a - b) = 0 \(\Leftrightarrow\)(a - b)(a+b+3)=0 \(\Leftrightarrow\)a+b+3=0 (vì a,b phan biet nen a - b \(\ne\)0)

\(\Leftrightarrow\)a+b=-3 (đpcm)

b)  Ta có : a^2 +2ab +b^2 =9 (vì a+b=-3) (1)

  • Vì a^2+3a=b^2+3b=2 \(\Rightarrow\)a^2+b^2+3(a+b)=4 \(\Rightarrow\)a^2+b^2=13 (2)     

Lấy (1) trừ (2) suy ra : 2ab=-4 \(\Leftrightarrow\)-ab=2 (3)

Lấy (2) cộng (3) suy ra : a^2-ab+b^2=15

Do đó : a^3+b^3=(a+b)(a^2-ab+b^2)=(-3)*15=-45(đpcm)

5 tháng 8 2016

cảm ơn nha

6 tháng 10 2019

a) Phân tích  a 2  – 6ab + 9 b 2 = ( a   –   3 b ) 2 ; thực hiện phép chia được kết quả a – 3b.

b) Phân tích  a 3  + 9 a 2 b + 27a b 2  – 27 b 3 = ( a   –   3 b ) 3 ; thực hiện phép chia được kết quả a – 3b.

NV
13 tháng 8 2021

Đặt \(P=\dfrac{a^3}{a^2+b^2+ab}+\dfrac{b^3}{b^2+c^2+bc}+\dfrac{c^3}{c^2+a^2+ca}\)

Ta có: \(\dfrac{a^3}{a^2+b^2+ab}=a-\dfrac{ab\left(a+b\right)}{a^2+b^2+ab}\ge a-\dfrac{ab\left(a+b\right)}{3\sqrt[3]{a^3b^3}}=a-\dfrac{a+b}{3}=\dfrac{2a-b}{3}\)

Tương tự: \(\dfrac{b^3}{b^2+c^2+bc}\ge\dfrac{2b-c}{3}\) ; \(\dfrac{c^3}{c^2+a^2+ca}\ge\dfrac{2c-a}{3}\)

Cộng vế:

\(P\ge\dfrac{a+b+c}{3}=673\)

Dấu "=" xảy ra khi \(a=b=c=673\)

DT
12 tháng 6 2023

Sửa đề : \(\dfrac{a^2}{a^2+b}+\dfrac{b^2}{b^2+a}\le1\\ \) (*)

\(< =>\dfrac{a^2\left(b^2+a\right)+b^2\left(a^2+b\right)}{\left(a^2+b\right)\left(b^2+a\right)}\le1\\ < =>a^2b^2+a^3+b^2a^2+b^3\le\left(a^2+b\right)\left(b^2+a\right)\) ( Nhân cả 2 vế cho `(a^{2}+b)(b^{2}+a)>0` )

\(< =>a^3+b^3+2a^2b^2\le a^2b^2+b^3+a^3+ab\\ < =>a^2b^2\le ab\\ < =>ab\le1\) ( Chia 2 vế cho `ab>0` )

Do a,b >0 

Nên áp dụng BDT Cô Si :

\(2\ge a+b\ge2\sqrt{ab}< =>\sqrt{ab}\le1\\ < =>ab\le1\)

Do đó (*) luôn đúng

Vậy ta chứng minh đc bài toán

Dấu "=" xảy ra khi : \(a=b>0,a+b=2< =>a=b=1\)

17 tháng 7 2021

VP `=(a+b)(a^2-ab+b^2)`

`=a^3-a^2b+ab^2+a^2b-ab^2+b^3`

`=a^3+(a^2b-a^2b)+(ab^2-ab^2)+b^3`

`=a^3+b^3`

.

VP `=(a-b)(a^2+ab+b^2)`

`=a^3+a^2b+ab^2-a^2b-ab^2-b^3`

`=a^3+(a^2b-a^2b)+(ab^2-ab^2)-b^3`

`=a^3-b^3`

17 tháng 7 2021

đúng rồi mà