Cho đa thức f(x) = ax2 + bx + 2019 có hệ số a, b là các số hữu tỉ và \(f\left(1+\sqrt{2}\right)=2020.\)
Tìm a, b và tính \(f\left(1-\sqrt{2}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(x\right)=ax^2+bx+2020\\ \Leftrightarrow f\left(\sqrt{3}-1\right)=a\left(4-2\sqrt{3}\right)+b\left(\sqrt{3}-1\right)+2020=2021\\ \Leftrightarrow4a-2a\sqrt{3}+b\sqrt{3}-b-1=0\\ \Leftrightarrow\left(4a-b-1\right)-\sqrt{3}\left(2a-b\right)=0\\ \Leftrightarrow4a-b-1=\sqrt{3}\left(2a-b\right)\)
Vì a,b hữu tỉ nên \(4a-b-1;2a-b\) hữu tỉ
Mà \(\sqrt{3}\) vô tỉ nên \(\sqrt{3}\left(2a-b\right)\) hữu tỉ khi \(2a-b=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}4a-b-1=0\\2a-b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=1\end{matrix}\right.\)
\(\Leftrightarrow f\left(1+\sqrt{3}\right)=\dfrac{1}{2}\left(4+2\sqrt{3}\right)+1+\sqrt{3}+2020=2023+2\sqrt{3}\)
Ta có: a + 3c + a + 2b = 2019 + 2020 = 4039
=> 2 ( a + b + c ) = 4039 - c (1)
a; b ; c là các số hữu tỉ không âm => a; b ; c \(\ge\)0
=> 2 ( a + b + c ) = 4039 - c \(\le\)4039
=> a + b + c \(\le\frac{4039}{2}=2019\frac{1}{2}\)
mà f(1) = a + b + c
=> f (1) \(\le2019\frac{1}{2}\)
Dấu "=" xảy ra <=> c = 0 ; a = 2019 ; b = 1/2
Lời giải:
\(f(1+\sqrt{2})=a(1+\sqrt{2})^2+b(1+\sqrt{2})+2018=2019\)
\(\Leftrightarrow a(3+2\sqrt{2})+b(1+\sqrt{2})=1\)
\(\Leftrightarrow (3a+b)+\sqrt{2}(2a+b)=1\)
\(\Leftrightarrow \sqrt{2}(2a+b)=1-3a-b(*)\)
Vì $a,b\in\mathbb{Q}$ nên $1-3a-b\in\mathbb{Q}$ và $2a+b\in\mathbb{Q}$
Mà $\sqrt{2}\not\in\mathbb{Q}$ (kết quả quen thuộc) nên để $(*)$ xảy ra thì \(\left\{\begin{matrix} 2a+b=0\\ 1-3a-b=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=1\\ b=-2\end{matrix}\right.\)
Ta có \(f\left(1\right)=g\left(2\right)\)
hay \(2.1^2+a.1+4=2^2-5.2-b\)
\(2+a+4\) \(=4-10-b\)
\(6+a\) \(=-6-b\)
\(a+b\) \(=-6-6\)
\(a+b\) \(=-12\) \(\left(1\right)\)
Lại có \(f\left(-1\right)=g\left(5\right)\)
hay \(2.\left(-1\right)^2+a.\left(-1\right)+4=5^2-5.5-b\)
\(2-a+4\) \(=25-25-b\)
\(6-a\) \(=-b\)
\(-a+b\) \(=-6\)
\(b-a\) \(=-6\)
\(b\) \(=-b+a\) \(\left(2\right)\)
Thay \(\left(2\right)\) vào \(\left(1\right)\) ta được:
\(a+\left(-6+a\right)=-12\)
\(a-6+a\) \(=-12\)
\(a+a\) \(=-12+6\)
\(2a\) \(=-6\)
\(a\) \(=-6:2\)
\(a\) \(=-3\)
Mà \(a=-3\)
⇒ \(b=-6+\left(-3\right)=-9\)
Vậy \(a=3\) và \(b=-9\)
Cái Vậy \(a=3\) và \(b=-9\) bạn ghi là \(a=-3\) và \(b=-9\) nha mk quên ghi dấu " \(-\) "
f(x) có nghiệm
=> \(b^2\ge4c\)
\(f\left(2\right)=4+2b+c=\frac{b}{2}+\frac{b}{2}+\frac{b}{2}+\frac{b}{2}+c+1+1+1+1\)
\(\ge9\sqrt[9]{\frac{1}{16}b^4c}\ge9\sqrt[9]{\frac{1}{16}.\left(4c\right)^2.c}=9\sqrt[3]{c}\)(ĐPCM)
Dấu bằng xảy ra khi b=2,c=1
Mình có nghĩ ra cách này mọi người xem giúp mình với
f(x) = \(ax^2+bx+c\)
Ta có f(0) = 2 => c = 2
Ta đặt Q(x) = \(ax^2+bx+c-2020\)
và G(x) = \(ax^2+bx+c+2021\)
f(x) - 2020 chia cho x - 1 hay Q(x) chia cho x - 1 được số dư
\(R_1\) = Q(1) = \(a.1^2+b.1+c-2020=a+b+c-2020\)
Mà Q(x) chia hết cho x-1 nên \(R_1\) = 0
hay \(a+b+c-2020=0\). Mà c = 2 => a + b = 2018 (1)
G(x) chia cho x + 1 số dư
\(R_2\) = G(-1) = \(a.\left(-1\right)^2+b.\left(-1\right)+c+2021=a-b+2+2021\)
Mà G(x) chia hết cho x + 1 nên \(R_2\)=0
hay \(a-b+2+2021=0\) => \(a-b=-2023\) (2)
Từ (1) và (2) suy ra: \(\left\{{}\begin{matrix}a+b=2018\\a-b=-2023\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}a=-\dfrac{5}{2}\\b=\dfrac{4041}{2}\end{matrix}\right.\)
f(x) = ax\(^2\)+bx + 2019
=> \(f\left(1+\sqrt{2}\right)=a\left(1+\sqrt{2}\right)^2+b\left(1+\sqrt{2}\right)+2019=2020\)
<=> \(a+2\sqrt{2}a+2a+b+\sqrt{2}b-1=0\)
<=> \(\left(3a+b-1\right)+\sqrt{2}\left(2a+b\right)=0\)(1)
Vì a, b là số hữu tỉ => 3a + b -1 ; 2a + b là số hữu tỉ khi đó:
(1) <=> \(\hept{\begin{cases}3a+b-1=0\\2a+b=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a=1\\b=-2\end{cases}}\)
=> \(f\left(1-\sqrt{2}\right)=2020\)