Gỉa phương trình \(x^2+x-17=\sqrt{\left(x^2-15\right).\left(x-3\right)}+\sqrt{x^2-15}+\sqrt{x-3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
ĐKXĐ: $x\geq \sqrt{15}$
Đặt $\sqrt{x^2-15}=a; \sqrt{x-3}=b(a,b\geq 0)$
PT đã cho trở thành:
$a^2+b^2+1=ab+a+b$
$\Leftrightarrow 2a^2+2b^2+2=2ab+2a+2b$
$\Leftrightarrow 2a^2+2b^2+2-2ab-2a-2b=0$
$\Leftrightarrow (a^2+b^2-2ab)+(a^2-2a+1)+(b^2-2b+1)=0$
$\Leftrightarrow (a-b)^2+(a-1)^2+(b-1)^2=0$
Thấy rằng $(a-b)^2\geq 0; (a-1)^2\geq 0; (b-1)^2\geq 0$ với mọi $a,b\geq 0$
Do đó để tổng của chúng bằng $0$ thì $(a-b)^2=(a-1)^2=(b-1)^2=0$
$\Rightarrow a=b=1$
$\Rightarrow a^2=b^2=1$
$\Rightarrow x^2-15=x-3=1$
$\Rightarrow x=4$ (thỏa mãn)
Vậy.......
Điều kiện xác định : \(x,y,z\ge0\)
Đặt \(a=\sqrt{x}-13\) , \(b=\sqrt{y}-14\) , \(c=\sqrt{z}-15\)
Ta có hệ : \(\hept{\begin{cases}ab=2\\bc=6\\ac=3\end{cases}}\). Nhân các pt theo vế : \(\left(abc\right)^2=36\Leftrightarrow\orbr{\begin{cases}abc=6\\abc=-6\end{cases}}\)
TH1. Nếu abc = 6 thì kết hợp với mỗi pt ta được : \(\hept{\begin{cases}c=3\\b=2\\a=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=196\\y=256\\z=324\end{cases}}\)
TH2. Nếu \(abc=-6\) thì tương tự ta được \(\hept{\begin{cases}a=-1\\b=-2\\c=-3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=144\\y=144\\z=144\end{cases}}\)
Vậy ................................................
Áp dụng bất đẳng thức AM - GM:
\(\sqrt{\left(x^2-15\right)\left(x-3\right)}\le\dfrac{x^2-15+x-3}{2}=\dfrac{x^2+x-18}{2};\sqrt{x^2-15}\le\dfrac{x^2-15+1}{2}=\dfrac{x^2-14}{2};\sqrt{x-3}\le\dfrac{x-3+1}{2}=\dfrac{x-2}{2}\).
Do đó \(F\ge x^2+x-\dfrac{x^2+x-18}{2}-\dfrac{x^2-14}{2}-\dfrac{x-2}{2}-38=-21\).
Đẳng thức xảy ra khi x = 4.
Vậy...