K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
24 tháng 2 2020

Lời giải:
ĐKXĐ: $x\geq \sqrt{15}$

Đặt $\sqrt{x^2-15}=a; \sqrt{x-3}=b(a,b\geq 0)$

PT đã cho trở thành:

$a^2+b^2+1=ab+a+b$

$\Leftrightarrow 2a^2+2b^2+2=2ab+2a+2b$

$\Leftrightarrow 2a^2+2b^2+2-2ab-2a-2b=0$

$\Leftrightarrow (a^2+b^2-2ab)+(a^2-2a+1)+(b^2-2b+1)=0$

$\Leftrightarrow (a-b)^2+(a-1)^2+(b-1)^2=0$

Thấy rằng $(a-b)^2\geq 0; (a-1)^2\geq 0; (b-1)^2\geq 0$ với mọi $a,b\geq 0$

Do đó để tổng của chúng bằng $0$ thì $(a-b)^2=(a-1)^2=(b-1)^2=0$

$\Rightarrow a=b=1$

$\Rightarrow a^2=b^2=1$

$\Rightarrow x^2-15=x-3=1$

$\Rightarrow x=4$ (thỏa mãn)

Vậy.......

6 tháng 11 2016

Điều kiện xác định : \(x,y,z\ge0\)

Đặt \(a=\sqrt{x}-13\) , \(b=\sqrt{y}-14\) , \(c=\sqrt{z}-15\)

Ta có hệ : \(\hept{\begin{cases}ab=2\\bc=6\\ac=3\end{cases}}\). Nhân các pt theo vế : \(\left(abc\right)^2=36\Leftrightarrow\orbr{\begin{cases}abc=6\\abc=-6\end{cases}}\)

TH1. Nếu abc = 6 thì kết hợp với mỗi pt ta được : \(\hept{\begin{cases}c=3\\b=2\\a=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=196\\y=256\\z=324\end{cases}}\)

TH2. Nếu \(abc=-6\) thì tương tự ta được \(\hept{\begin{cases}a=-1\\b=-2\\c=-3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=144\\y=144\\z=144\end{cases}}\)

Vậy ................................................

6 tháng 11 2016

CHIU THOI

K NHA @@@@@@@ Nguyễn Phúc Lộc 

2 tháng 1 2021

Áp dụng bất đẳng thức AM - GM:

\(\sqrt{\left(x^2-15\right)\left(x-3\right)}\le\dfrac{x^2-15+x-3}{2}=\dfrac{x^2+x-18}{2};\sqrt{x^2-15}\le\dfrac{x^2-15+1}{2}=\dfrac{x^2-14}{2};\sqrt{x-3}\le\dfrac{x-3+1}{2}=\dfrac{x-2}{2}\).

Do đó \(F\ge x^2+x-\dfrac{x^2+x-18}{2}-\dfrac{x^2-14}{2}-\dfrac{x-2}{2}-38=-21\).

Đẳng thức xảy ra khi x = 4.

Vậy...