K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2020

T>a có : \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

=>\(\frac{ab+bc+ca}{abc}=\frac{1}{a+b+c}\)

=> \(\left(ab+bc+ca\right)\left(a+b+c\right)=abc\)

=> \(ab\left(a+b+c\right)+bc\left(a+b+c\right)+ca\left(a+b+c\right)=abc\)

=> \(a^2b+ab^2+abc+abc+b^2c+bc^2+ca^2+abc+ac^2=abc\)

=> \(a^2b+ab^2+b^2c+bc^2+ca^2+ac^2+2abc=0\)

=> \(\left(a^2b+2abc+bc^2\right)+\left(ab^2+2abc+ac^2\right)+\left(b^2c-2abc+ca^2\right)=0\)

=> \(b\left(a+c\right)^2+a\left(b+c\right)^2+c\left(a-b\right)^2=0\)

=> \(\hept{\begin{cases}a+c=0\\b+c=0\\a-b=0\end{cases}\Rightarrow\hept{\begin{cases}a=-c\\b=-c\\a=b\end{cases}}}\)

=> trong 3 số a,b,c có  2 số đối nhau  ( đpcm)

Thay a=-c ,b = -c vào \(\frac{1}{a^{2019}}+\frac{1}{b^{2019}}+\frac{1}{c^{2019}}=\frac{1}{\left(-c\right)^{2019}}+\frac{1}{\left(-c\right)^{2019}}+\frac{1}{c^{2019}}\)

                                                                                    \(=-\frac{1}{c^{2019}}\)(1)

\(\frac{1}{a^{2019}+b^{2019}+c^{2019}}=\frac{1}{\left(-c\right)^{2019}+\left(-c\right)^{2019}+c^{2019}}=-\frac{1}{c^{2019}}\)  (2)

Từ (1),(2) => \(\frac{1}{a^{2019}}+\frac{1}{b^{2019}}+\frac{1}{c^{2019}}=\frac{1}{a^{2019}+b^{2019}+c^{2019}}\)  (đpcm)

13 tháng 1 2020

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b}{c\left(a+b+c\right)}=0\)

\(\Leftrightarrow\left(a+b\right)\left[ab+c\left(a+b+c\right)\right]=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Rightarrow a=-b\left(h\right)b=-c\left(h\right)c=-a\)

Thay vào tính nốt

9 tháng 8 2019

EM tham khảo phần đầu ở link: Câu hỏi của Đinh Nguyến Nhật Minh - Toán lớp 8 - Học toán với OnlineMath

Trong 3 số a,b, c có hai số đối nhau g/s 2 số đó là a và b kho đó a=-b 

=> \(\frac{1}{a^{2019}}+\frac{1}{b^{2019}}+\frac{1}{c^{2019}}=\frac{1}{\left(-b\right)^{2019}}+\frac{1}{b^{2019}}+\frac{1}{c^{2019}}=-\frac{1}{b^{2019}}+\frac{1}{b^{2019}}+\frac{1}{c^{2019}}=\frac{1}{c^{2019}}\)

và \(\frac{1}{a^{2019}+b^{2019}+c^{2019}}=\frac{1}{\left(-b\right)^{2019}+b^{2019}+c^{2019}}=\frac{1}{-b^{2019}+b^{2019}+c^{2019}}=\frac{1}{c^{2019}}\)

Do đó: \(\frac{1}{a^{2019}}+\frac{1}{b^{2019}}+\frac{1}{c^{2019}}=\frac{1}{a^{2019}+b^{2019}+c^{2019}}\)

14 tháng 1 2017

Ta có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}\right)+\left(\frac{1}{c}-\frac{1}{a+b+c}\right)=0\)

\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b+c-c}{\left(a+b+c\right)c}=0\Leftrightarrow\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{\left(a+b+c\right)c}\right)=0\)

\(\left(\frac{1}{ab}+\frac{1}{\left(a+b+c\right)c}\right)\ne0\)với mọi a,b,c

\(\Rightarrow\)a+b=0\(\Leftrightarrow\)a=-b là hai số đối nhau (1)

từ đó được \(a^n=-b^n\)với mọi n lẻ.

Khi đó \(\frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{1}{a^n+b^n+c^n}\Leftrightarrow\frac{1}{c^n}=\frac{1}{c^n}\)luôn đúng (2)

Từ (1)và(2) ta được đpcm

14 tháng 11 2016

sao bn toàn cây khó thế?

 

15 tháng 11 2016

làm đề tỉnh mà .Sắp thi rồi nên

29 tháng 9 2019

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\left(ab+ac+bc\right)\left(a+b+c\right)-abc=0\)

\(\Leftrightarrow\left(b+c\right)\left(ab+ac+bc\right)+a\left(ab+ac+bc\right)-abc=0\)

\(\Leftrightarrow\left(b+c\right)\left(ab+ac+bc\right)+a\left(ab+bc\right)=0\)

\(\Leftrightarrow\left(b+c\right)\left(ab+ac+bc\right)+a^2\left(c+b\right)=0\)

\(\Leftrightarrow\left(b+c\right)\left(ab+ac+bc+a^2\right)=0\)

\(\Leftrightarrow\left(b+c\right)\left(a+c\right)\left(a+b\right)=0\)

=> a=-b hoặc b=-c hoặc c = -a

Không mất tình tổng quát, giả sử a=-b -> a^n = -b^n ( n lẻ):

\(\frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{1}{c^n}=\frac{1}{a^n+b^b+c^n}\)

18 tháng 7 2017

- viết lại cái đề

* Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{a}{3b}=\frac{b}{3c}=\frac{c}{3d}=\frac{d}{3a}=\frac{a+b+c+d}{3.\left(a+b+c+d\right)}=\frac{1}{3}\)

* Vậy \(\frac{a}{3b}=\frac{1}{3}\Rightarrow3a=3b\Rightarrow a=b\left(1\right)\)

\(\frac{b}{3c}=\frac{1}{3}\Rightarrow3b=3c\Rightarrow b=c\left(2\right)\)

\(\frac{c}{3d}=\frac{1}{3}\Rightarrow3c=3d\Rightarrow c=d\left(3\right)\)

\(\frac{d}{3a}=\frac{1}{3}\Rightarrow3d=3a\Rightarrow d=a\left(4\right)\)

từ (1),(2),(3),(4) ta có:

a=b,b=c,c=d,d=a

=> a=b=c=d

15 tháng 11 2016

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Rightarrow\frac{1}{a+b+c}=\frac{bc+ca+ab}{abc}\)

\(\Rightarrow\left(a+b+c\right)\left(bc+ca+ab\right)=abc\)

\(\Rightarrow abc+a^2c+a^2b+b^2c+abc+ab^2+bc^2+ac^2+abc=abc\)

\(\Rightarrow2abc+a^2c+a^2b+b^2c+ab^2+bc^2+ac^2=0\)

\(\Rightarrow\left(abc+a^2b\right)+\left(ac^2+a^2c\right)+\left(b^2c+b^2a\right)+\left(bc^2+abc\right)=0\)

\(\Rightarrow ab\left(a+c\right)+ac\left(a+c\right)+b^2\left(a+c\right)+bc\left(a+c\right)=0\)

\(\Rightarrow\left(ab+ac+b^2+bc\right)\left(a+c\right)=0\)

\(\Rightarrow\left[\left(ab+ac\right)+\left(b^2+bc\right)\right]\left(a+c\right)=0\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)

Do đó trong a , b , c luôn có 2 số đối nhau.

Phần 2 : Do vai trò a , b , c như nhau nên coi \(a=-b\)( Do có 2 số đối nhau)

\(\Rightarrow a^n=-b^n\)(Vì n lẻ )

\(\Rightarrow\frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{a^n+b^n}{a^n.b^n}+\frac{1}{c^n}=0+\frac{1}{c^n}=\frac{1}{c^n}\)

\(\frac{1}{a^n+b^n+c^n}=\frac{1}{\left(a^n+b^n\right)+c^n}=\frac{1}{0+c^n}=\frac{1}{c^n}\)

\(\Rightarrow\frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{1}{a^n+b^n+c^n}\)

Vậy ...

24 tháng 10 2017

mk ko bt 123

\(\frac{a}{c}=\frac{a-b}{b-c}\Rightarrow a\left(b-c\right)=c\left(a-b\right)\)           (1)

\(\frac{1}{c}+\frac{1}{a-b}=\frac{a-b+c}{c\left(a-b\right)}\)                  (2)

\(\frac{1}{b-c}-\frac{1}{a}=\frac{a-b+c}{a\left(b-c\right)}\)                  (3)

\(Từ\left(1\right),\left(2\right),\left(3\right)\Rightarrow\)điều phải chứng minh

16 tháng 12 2016

ta có 

\(\frac{bc+ac+ab}{abc}=\frac{1}{a+b+c}\)

\(3+\frac{bc\left(b+c\right)+ac\left(b+c\right)+ab\left(a+b\right)}{abc}=0\) 

\(\frac{b^2c+bc^2}{abc}>0\)

tương tự các phân thức còn lại  suy ra a=b=c