K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2021

Áp dụng BĐT Cauchy cho 2 số dương:

\(\left\{{}\begin{matrix}\dfrac{a^2}{b}+b\ge2\sqrt{\dfrac{a^2}{b}.b}=2a\\\dfrac{b^2}{c}+c\ge2\sqrt{\dfrac{b^2}{c}.c}=2b\\\dfrac{c^2}{a}+a\ge2\sqrt{\dfrac{c^2}{a}.a}=2c\end{matrix}\right.\)

\(\Rightarrow\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}+a+b+c\ge2a+2b+2c\)

\(\Rightarrow\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge a+b+c\left(đpcm\right)\)

Dấu "=" xay ra \(\Leftrightarrow a=b=c\)

13 tháng 10 2021

Áp dụng BĐT cosi cho 3 số a,b,c dương:

\(\dfrac{a^2}{b}+b\ge2\sqrt{\dfrac{a^2b}{b}}=2a\\ \dfrac{b^2}{c}+c\ge2\sqrt{\dfrac{b^2c}{c}}=2b\\ \dfrac{c^2}{a}+a\ge2\sqrt{\dfrac{c^2a}{a}}=2c\)

Cộng vế theo vế 3 BĐT trên

\(\Leftrightarrow\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}+a+b+c\ge2\left(a+b+c\right)\\ \Leftrightarrow\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge a+b+c\)

Dấu \("="\Leftrightarrow a=b=c\)

AH
Akai Haruma
Giáo viên
8 tháng 7 2017

Lời giải:

Tìm max:

Áp dụng BĐT Bunhiacopsky:

\(M^2=(2x+\sqrt{5-x^2})^2\leq (2^2+1)(x^2+5-x^2)=25\)

\(\Rightarrow M\leq 5\) hay \(M_{\max}=5\Leftrightarrow x=2\)

Tìm min:

Ta thấy \(5-x^2\geq 0\Rightarrow x^2\leq 5\rightarrow x\geq -\sqrt{5}\)

Do đó: \(M=2x+\sqrt{5-x^2}\geq =-2\sqrt{5}+0=-2\sqrt{5}\)

\(\Rightarrow M_{\min}=-2\sqrt{5}\Leftrightarrow x=-\sqrt{5}\)

NV
21 tháng 8 2021

\(a^4+b^4+b^4+b^4\ge4\sqrt[4]{a^4b^{12}}=4ab^3\)

Tương tự:

\(b^4+3c^4\ge4bc^3\) ; \(c^4+3a^4\ge4ca^3\)

Cộng vế:

\(M\le a^4+b^4+c^4=1\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{\sqrt[4]{3}}\)

NV
18 tháng 2 2022

Đặt \(\sqrt{1+a^2}+\sqrt{1-a^2}=x\Rightarrow\sqrt{2}\le x\le2\)

\(x^2=2+2\sqrt{1-a^4}\Rightarrow\sqrt{1-a^4}=\dfrac{x^2-2}{2}\)

\(\Rightarrow\dfrac{x^2-2}{2}+\left(b+1\right)x+b-4\le0\)

\(\Rightarrow x^2+2\left(b+1\right)x+2b-10\le0\)

\(\Rightarrow x^2+2x-10\le-2b\left(x+1\right)\)

\(\Rightarrow-2b\ge\dfrac{x^2+2x-10}{x+1}\)

\(\Rightarrow-2b\ge\max\limits_{\left[\sqrt{2};2\right]}f\left(x\right)\) với \(f\left(x\right)=\dfrac{x^2+2x-10}{x+1}\)

Xét trên \(\left[\sqrt{2};2\right]\) ta có:

\(f\left(x\right)=\dfrac{3x^2+6x-30}{3\left(x+1\right)}=\dfrac{3x^2+8x-28-2\left(x+1\right)}{3\left(x+1\right)}=\dfrac{\left(3x+14\right)\left(x-2\right)}{3\left(x+1\right)}-\dfrac{2}{3}\le-\dfrac{2}{3}\)

\(\Rightarrow-2b\ge-\dfrac{2}{3}\Rightarrow b\le\dfrac{1}{3}\)

Vậy \(b_{max}=\dfrac{1}{3}\)

9 tháng 7 2016

A B C M H K

a) Dễ thấy \(\Delta HBM\) và \(\Delta KCM\) là nửa các tam giác đều

Đặt BM = x ; CM = y \(\Rightarrow x+y=a\) (không đổi)

Ta có \(MH=sinB.BM=\frac{\sqrt{3}x}{2}\) ; \(MK=sinC.CM=\frac{\sqrt{3}y}{2}\)

\(\Rightarrow MH+MK=\frac{\sqrt{3}}{2}\left(x+y\right)=\frac{\sqrt{3}a}{2}\) không đổi.

b) Vì MH + MK không đổi khi M di chuyển trên BC (câu a) nên MH.MK đạt giá trị lớn nhất \(\Leftrightarrow MH=MK\)

Theo bất đẳng thức Cosi, ta có : \(MH.MK\le\frac{\left(MH+MK\right)^2}{4}=\frac{\left(\frac{\sqrt{3}a}{2}\right)^2}{4}=\frac{3a^2}{16}\)

Vậy Max MH.MK \(=\frac{3a^2}{16}\Leftrightarrow MH=MK\Leftrightarrow MB=MC\Leftrightarrow\)M là trung điểm của BC