tìm giá trị nhỏ nhất của |x+2019|+|x+2020|+|x+2021|
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bđt cosi
\(P=\left|x-2019\right|+\dfrac{2020}{\left|x-2019\right|}+2021\ge2\sqrt{\dfrac{\left|x-2019\right|.2020}{\left|x-2019\right|}}+2021=4\sqrt{505}+2021\)
Dấu ''='' xảy ra khi \(x-2019=2020\Leftrightarrow x=4039\)
anh ơi, anh tick em câu này được ko ạ, tick được thì em cảm ơn ạ
https://hoc24.vn/cau-hoi/quang-duong-tu-tinh-a-den-tinh-b-dai-950-km-vay-tren-ban-do-co-ti-le-1-1-000-000-thi-quang-duong-do-dai-la-cm.6180857381096
Ta có: \(C=\frac{\left|x-2019\right|+2020}{\left|x-2019\right|+2021}=\frac{\left|x-2019\right|+2021-1}{\left|x-2019\right|+2021}=1-\frac{1}{\left|x-2019\right|+2021}\)
=> C đạt giá trị nhỏ nhất khi \(\frac{1}{\left|x-2019\right|+2021}\) lớn nhất
=> |x - 2019| + 2021 nhỏ nhất
Ta có: \(\left|x-2019\right|\ge0\)
\(\Rightarrow\left|x-2019\right|+2021\ge2021\)
Dấu "=" xảy ra khi x - 2019 = 0
=> x = 2019
\(\Rightarrow C=\frac{\left|2019-2019\right|+2020}{\left|2019-2019\right|+2021}=\frac{2020}{2021}\)
Vậy \(MinC=\frac{2020}{2021}\Leftrightarrow x=2019\).
\(A=\frac{\left|x-2019\right|+2020}{\left|x-2019\right|+2021}\)
\(=\frac{\left|x+2019\right|+2021-1}{\left|x-2019\right|+2021}\)
\(=1-\frac{1}{\left|x-2019\right|+2021}\)
\(\ge1-\frac{1}{\left|2019-2019\right|+2021}=1-\frac{1}{2021}=\frac{2020}{2021}\)
Dấu "=" xảy ra tại \(x=2019\)
Bài giải
\(A=\frac{\left|x-2019\right|+2020}{\left|x-2019\right|+2021}=\frac{\left|x-2019\right|+2021-1}{\left|x-2019\right|+2021}=1-\frac{1}{\left|x-2019\right|+2021}\)
A đạt GTNN khi \(\frac{1}{\left|x-2019\right|+2021}\) đạt GTLN \(\Leftrightarrow\text{ }\left|x-2019\right|+2021\) đạt GTNN
Mà \(\left|x-2019\right|\ge0\) Dấu " = " xảy ra khi x - 2019 = 0 => x = 2019
\(\Rightarrow\text{ }\left|x-2019\right|+2021\ge2021\)
\(\Rightarrow\text{ }\frac{1}{\left|x-2019\right|+2021}\le\frac{1}{2021}\)
\(\Rightarrow\text{ }A\ge1-\frac{1}{2021}=\frac{2020}{2021}\)
Đặt \(S=\left|x+2019\right|+\left|x+2020\right|+\left|x+2021\right|\)
\(=\left(\left|x+2019\right|+\left|x+2021\right|\right)+\left|x+2020\right|\)
\(=\left(\left|x+2019\right|+\left|-x-2021\right|\right)+\left|x+2020\right|\ge\left|x+2019+\left(-x-2021\right)\right|+0=0\)
Dấu " = " xảy ra \(\Leftrightarrow x=-2020\)
Vậy \(Min_S=2\)