Cho A= \(\frac{n^2+3n+8}{n+2}\) và B= \(\frac{3n^2+3n+7}{n^3+3}\)
Tìm số tự nhiên n để A và B đều là số nguyên.
Mình đang cần gấp các bạn giúp mình nha!
Mình cảm ơn các bạn trước ^_^
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(n+2) chia hết (n+2)
=>[(3n+10)-(n+2)] chia hết cho (n+2)
[(3n+10)-(n+2)x3] chia hết cho (n+2)
[(3n+10)-(3n+6)] chia hết cho (n+2)
=4 chia hết cho (n+2)
Ư(4)={1;2;4}
(n+2) | n | chọn/loại |
1 | -1 | loại |
2 | 0 | chọn |
4 | 2 | chọn |
n thuộc {0;2}
Để a là phân số tối giản thì ƯCLN(3n-1;n-2)=1
Gọi ƯCLN(3n-1;n-2)=d => 3n-1 chia hết cho d;n-2 chia hết cho d
=>3n-1-(n-2) chia hết cho d
=>3n-1-3(n-2) chia hết cho d
=>3n-1-3n-6 chia hết cho d
=>-5 chia hết cho d
Vì n-2 là Ư(3n-13) nên 3n-13 \(⋮\)n-2
=> n-2 \(⋮\)n-2
=> ( 3n-13) - (n-2) \(⋮\)n-2
=> (3n-13) - 3(n-2) \(⋮\)n-2
=> 3n-13 - 3n + 6 \(⋮\)n-2
=>7 \(⋮\)n-2
=> n-2 \(\in\)Ư(7)= {1;7; -1; -7}
=> n \(\in\){ 3; 9; 1; -5}
Vậy...
Ta có n - 2 là ước của 3n - 13
\(\Leftrightarrow3n-13⋮n-2\)
\(\Leftrightarrow3.\left(n-2\right)-7⋮n-2\)
\(\Leftrightarrow7⋮n-2\)
\(\Leftrightarrow n-2\in\left\{-7;-1;7;1\right\}\)
\(\Leftrightarrow\) \(n\in\left\{-5;1;9;3\right\}\)
Vậy \(n\in\left\{-5;1;9;3\right\}\)
Học tốt