K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2020

A B C G M N

23 tháng 2 2020

Gọi tđ BC là I ,MG//AB -Thales ta có \(\frac{MI}{BM}=\frac{GI}{AG}=\frac{1}{2}\left(1\right)\)

Lại có NG//AC nên \(\frac{IN}{NC}=\frac{GI}{AG}=\frac{1}{2}\left(2\right)\)

Từ (1) có BM=2MI, Tư f (2) có NC=2NI

Ta có MG//AB,NG//AC nên \(\frac{MI}{BI}=\frac{NI}{CI}=\frac{IG}{AI},BI=CI\Rightarrow MI=NI\)\(\Rightarrow BM=NC=MI+NI=MN\)

a: Xét ΔAHB và ΔAHC có

AB=AC
góc BAH=góc CAH

AH chung

=>ΔAHB=ΔAHC

b: Xet ΔABC có

AH,BD là trung tuyến

AH cắt BD tại G

=>G là trọng tâm

c: Xét ΔABC có

H là trung điểm của BC

HE//AC

=>E là trung điểm của AB

=>C,G,E thẳng hàng

a: Gọi E là trung điểm của BC

=>A,G,E thẳng hàng và AG=2GE

Xét ΔEABcó GM//AB

nên BM/BE=AG/AE=2/3

=>BM=2/3BE=2/3*1/2BC=1/3BC

b: Xét ΔEAC có GN//AC
nên CN/CE=AG/AE=2/3

=>CN=2/3*CE=2/3*1/2BC=1/3BC

MN=BC-BM-CN=1/3BC

=>BM=MN=NC

24 tháng 2 2023

G là trung điểm mà

AH
Akai Haruma
Giáo viên
26 tháng 1 2018

Lời giải:

Lấy \(BG\cap AC\equiv E; CG\cap AB\equiv F\)

Vì $G$ là trọng tâm tam giác $ABC$ nên \(\frac{BG}{BE}=\frac{CG}{CF}=\frac{2}{3}\)

Xét tam giác $BEC$ có \(GN\parallel EC\Rightarrow \frac{BN}{BC}=\frac{BG}{BE}=\frac{2}{3}\) (định lý Thales)

\(\Leftrightarrow \frac{BC-BN}{BC}=\frac{1}{3}\Leftrightarrow \frac{NC}{BC}=\frac{1}{3}\) (1)

Xét tam giác $CFB$ có \(GM\parallel FB\Rightarrow \frac{MC}{CB}=\frac{GC}{CF}=\frac{2}{3}\) (định lý Thales)

\(\Leftrightarrow \frac{CB-MC}{CB}=\frac{1}{3}\Leftrightarrow \frac{MB}{CB}=\frac{1}{3}\) (2)

Từ (1); (2)

\(\Rightarrow MN=BC-NC-MB=BC-\frac{1}{3}BC-\frac{1}{3}BC=\frac{1}{3}BC\)

Do đó: \(BM=MN=NC(=\frac{BC}{3})\)

Ta có đpcm.