Tim cac so nguyen x y thoa man\(x^3+3x=x^2y+2y+5\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{4}{x}=\frac{5-2y}{3}\Leftrightarrow x\left(5-2y\right)=12\)
Do \(x,y\)là số nguyên nên \(x,5-2y\)là các ước của \(12\)mà \(5-2y\)là số lẻ nên ta có bảng giá trị:
5-2y | 1 | 3 | -1 | -3 |
x | 12 | 4 | -12 | -4 |
y | 2 | 1 | 3 | 4 |
Vậy phương trình có các nghiệm là: \(\left(12,2\right),\left(4,1\right),\left(-12,3\right),\left(-4,4\right)\).
mình mới học lớp 5 thôi !
Thông cảm cho mình nhé Do uyen Linh !
\(P=\frac{1}{5xy}+\frac{xy}{20}+\frac{5}{x+2y+5}+\frac{x+2y+5}{20}-\frac{xy}{20}-\frac{x+2y+5}{20}\)
\(\ge2\sqrt{\frac{1}{5xy}.\frac{xy}{20}}+2.\sqrt{\frac{5}{x+2y+5}.\frac{x+2y+5}{20}}-\frac{x\left(3-x\right)+x+2\left(3-x\right)+5}{20}\)
\(=2.\frac{1}{10}+2.\frac{1}{2}-\frac{-x^2+2x+11}{20}\)
\(=\frac{x^2-2x+1}{20}+\frac{3}{5}=\frac{\left(x-1\right)^2}{20}+\frac{3}{5}\ge\frac{3}{5}\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\frac{1}{5xy}=\frac{xy}{20}\\\frac{5}{x+2y+5}=\frac{x+2y+5}{20}\\\left(x-1\right)^2=0,x+y=3\end{cases}}\Leftrightarrow\hept{\begin{cases}xy=2\\x+2y+5=10\\x=1,x+y=3\end{cases}\Leftrightarrow}x=1,y=2\)
Vậy min P=3/5 khi x=1, y=2
Em co cach nay ngan gon hon, cac ban co the tham khao
P=\(\frac{1}{5xy}\) + \(\frac{5}{x+2y+5}\)=\(\frac{1}{5xy}\)+\(\frac{25}{5\left(x+2y+5\right)}\)
= \(\frac{1^2}{5xy}\)+\(\frac{5^2}{5\left(x+2y+5\right)}\)
\(\geq\) \(\frac{\left(1+5\right)^{^2}}{5xy+5\left(x+2y+5\right)}\)
=\(\frac{36}{5\left(xy+x+2y+2+3\right)}\)
=\(\frac{36}{5\left(\left(x+2\right)\left(y+1\right)+3\right)}\)
=\(\frac{36}{5\left(\frac{\left(x+y+3\right)^2}{4}+3\right)}\) (do \((x+2)(y+1) \leq \frac {(x+y+3)^2}{4}\) )
=\(\frac{36}{5\left(\frac{\left(3+3\right)^2}{4}+3\right)}\) (do \(x+y \leq 3\) )
=\(\frac{3}{5}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\frac{1}{5xy}=\frac{1}{x+2y+5}\\x+2=y+1\\x+y=3\end{cases}}\Leftrightarrow x=2,y=1\)
Vậy GTNN của P là 3/5 khi và chỉ khi x=2,y=1
\(x^3+3x=x^2y+2y+5\) \(\left(1\right)\)
\(\Leftrightarrow x^2y+2y=x^3+3x-5\)
\(\Leftrightarrow\left(x^2+2\right)y=x^3+3x-5\)
\(\Leftrightarrow y=\frac{x^3+3x-5}{x^2+2}=\frac{x^3+2x+x-5}{x^2+2}\)
\(=\frac{x\left(x^2+2\right)+\left(x-5\right)}{x^2+2}=\frac{x\left(x^2+2\right)}{x^2+2}+\frac{x-5}{x^2+2}\)
\(=x+\frac{x-5}{x^2+2}\)
Mà \(x,y\in Z\)
\(\Rightarrow\frac{x-5}{x^2+2}\in Z\)
\(\Rightarrow x-5⋮x^2+2\)
\(\Rightarrow\left(x-5\right)\left(x+5\right)⋮x^2+2\)
\(\Rightarrow x^2-25⋮x^2+2\)
\(\Rightarrow x^2+2-27⋮x^2+2\)
\(\Rightarrow27⋮x^2+2\)
\(\Rightarrow\left(x^2+2\right)\inƯ\left(27\right)\)
Mà \(Ư\left(27\right)=\left\{\pm1;\pm3;\pm9;\pm27\right\}\)
Nhưng \(x^2+2\ge2\forall x\)
\(\Rightarrow x^2+2\in\left\{3;9;27\right\}\)
Lập bảng giá trị :
Mà \(x\in Z\)
\(\Rightarrow x\in\left\{\pm1;\pm5\right\}\) \(\left(2\right)\)
Thay \(\left(2\right)\)vào \(\left(1\right)\)ta có :
+) Với \(x=-1\Rightarrow y=-3\) ( thõa mãn )
+) Với \(x=1\Rightarrow y=-\frac{1}{3}\) ( loại )
+) Với \(x=-5\Rightarrow y=-\frac{145}{27}\) ( loại )
+) Với \(x=5\Rightarrow y=5\) ( thõa mãn )
Vậy các số nguyên \(\left(x,y\right)\)cần tìm là : \(\left(-1;-3\right)\) ; \(\left(5;5\right)\)