K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Vì MA, MC là tiếp tuyến nên: ˆMAO=ˆMCO=900⇒MAO^=MCO^=900⇒ AMCO là tứ giác nội tiếp đường tròn đường kính MO.

ˆADB=900ADB^=900 góc nội tiếp chắn nửa đường  tròn) ⇒ˆADM=900⇒ADM^=900 (1)

Lại có: OA = OC = R; MA = MC (tính chất tiếp tuyến). Suy ra OM là đường trung trực của AC

⇒ˆAEM=900⇒AEM^=900 (2). 

Từ (1) và (2) suy ra MADE là tứ giác nội tiếp đường tròn đường kính MA.

b)  Tứ giác AMDE nội tiếp suy ra: ˆADE=ˆAME=ˆAMOADE^=AME^=AMO^ (góc nội tiếp cùng chắn cung AE) (3)

Tứ giác AMCO nội tiếp suy ra: ˆAMO=ˆACOAMO^=ACO^(góc nội tiếp cùng chắn cung AO) (4).

Từ (3) và (4) suy ra ˆADE=ˆACOADE^=ACO^

c) Tia BC cắt Ax tại N. Ta có ˆACB=900ACB^=900 (góc nội tiếp chắn nửa đường tròn) ⇒ˆACN=900⇒ACN^=900, suy ra ∆ACN vuông tại C. Lại có MC = MA nên suy ra được MC = MN, do đó MA = MN (5).

Mặt khác ta có CH // NA (cùng vuông góc với AB) nên theo định lí Ta-lét thì ICMN=IHMA(=BIBM)ICMN=IHMA(=BIBM) (6).

Từ (5) và (6) suy ra IC = IH hay MB đi qua trung điểm của CH.

5 tháng 3 2023

Để giải quyết bài toán này, ta sử dụng định lí Menelaus và định lí Stewart.

Bước 1: Chứng minh AD/AC + AM/AN = 3.

Áp dụng định lí Menelaus cho tam giác AGC với đường thẳng cắt AC, ID, MG, ta có:

 

$\dfrac{IM}{MD} \cdot \dfrac{DN}{NC} \cdot \dfrac{CG}{GA} = 1$

Do $CG = 2 \cdot GA$ và $DN = AN - AD = AN - 2\cdot AI$, ta có thể đưa về dạng:

 

$\dfrac{IM}{MD} \cdot \dfrac{AN-2\cdot AI}{NC} = \dfrac{1}{2}$

Từ định lí Stewart, ta có $4\cdot AI\cdot DI + AD^2 = 3\cdot ID^2$, do đó $ID = \dfrac{AD}{\sqrt{3}}$.

Thay vào phương trình trên, ta được:

 

$\dfrac{IM}{MD} \cdot \dfrac{AN-AD}{NC} = \dfrac{1}{\sqrt{3}}$

Tương đương với:

 

$\dfrac{IM}{MD} \cdot \dfrac{AD}{NC} + \dfrac{IM}{MD} \cdot \dfrac{AM}{AN} = \dfrac{1}{\sqrt{3}} + \dfrac{AD}{NC}$

Từ đó suy ra:

 

$\dfrac{AM}{AN} + \dfrac{AD}{AC} = \dfrac{3}{\sqrt{3}}$

Do đó:

 

$\dfrac{AD}{AC} + \dfrac{AM}{AN} = 3$ (Đpcm)

16 tháng 2 2020

A B C Q M x O I N H

17 tháng 2 2020

a) Dễ thấy: góc MQA=90độ

MA, MC là 2 tiếp tuyến nên MO vuông góc với AC hay góc MIA=90 độ

suy ra AIQM là tứ giác nội tiếp

b) AIQM là tứ giác nội tiếp nên: góc IMQ = góc QAI

mà góc QAI = góc QBC nên góc IMQ = góc QBC 

Hay OM // BC

1. Cho đường tròn (O), đường kính AB, dây AM. Kéo dài AM một đoạn MC = AMa) Chứng minh AB = BCb) Gọi N là trung điểm BC. Chứng minh tứ giác BOMN là hình thoi.2. Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyếnMC với đường tròn (C là tiếp điểm).a) Chứng minh OM // BCb) Từ O vẽ đường thẳng vuông góc AB cắt BC tại N. Chứng minh BOMN là hình bình hànhc) Chứng minh...
Đọc tiếp

1. Cho đường tròn (O), đường kính AB, dây AM. Kéo dài AM một đoạn MC = AM
a) Chứng minh AB = BC
b) Gọi N là trung điểm BC. Chứng minh tứ giác BOMN là hình thoi.
2. Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyến
MC với đường tròn (C là tiếp điểm).
a) Chứng minh OM // BC
b) Từ O vẽ đường thẳng vuông góc AB cắt BC tại N. Chứng minh BOMN là hình bình hành
c) Chứng minh COMN là hình thang cân
3.Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyến
MC với đường tròn (C là tiếp điểm).Kẻ CH vuông góc với AB tại H
a) Chứng minh CA là phân giác góc HCM
b) Kẻ CH vuông góc Ax tại K, gọi I là giao điểm của AC và HK. Chứng minh tam giác AIO vuông
c) Chứng minh 3 điểm M, I, O thẳng hàng

0
1. Cho đường tròn (O), đường kính AB, dây AM. Kéo dài AM một đoạn MC = AMa) Chứng minh AB = BCb) Gọi N là trung điểm BC. Chứng minh tứ giác BOMN là hình thoi.2. Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyếnMC với đường tròn (C là tiếp điểm).a) Chứng minh OM // BCb) Từ O vẽ đường thẳng vuông góc AB cắt BC tại N. Chứng minh BOMN là hình bình hànhc) Chứng minh...
Đọc tiếp

1. Cho đường tròn (O), đường kính AB, dây AM. Kéo dài AM một đoạn MC = AM
a) Chứng minh AB = BC
b) Gọi N là trung điểm BC. Chứng minh tứ giác BOMN là hình thoi.
2. Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyến
MC với đường tròn (C là tiếp điểm).
a) Chứng minh OM // BC
b) Từ O vẽ đường thẳng vuông góc AB cắt BC tại N. Chứng minh BOMN là hình bình hành
c) Chứng minh COMN là hình thang cân
3.Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyến
MC với đường tròn (C là tiếp điểm).Kẻ CH vuông góc với AB tại H
a) Chứng minh CA là phân giác góc HCM
b) Kẻ CH vuông góc Ax tại K, gọi I là giao điểm của AC và HK. Chứng minh tam giác AIO vuông
c) Chứng minh 3 điểm M, I, O thẳng hàng
Mọi người ơi giúp e vsssssssssssssss.........E hỏi mà hong ai chỉ T.T

2
21 tháng 3 2020

ko làm mà muốn ăn thì chỉ có ăn cứt ăn đầu buồi nhá!

21 tháng 3 2020

Bài 1:

a,

OM là đường trung bình  của tam giác BAC => OM = 1/2*BC

OM = 1/2*AB

=> AB=BC (đpcm).

b, 

Tam giác ABC đều => BC = 2*r(O)

MN là đường trung bình của tam giác ABC => MN = 1/2*AB = r(O) = OM = OB =BN => BOMN là hình thoi.