Cho tam giác ABC vuông tại A ( AB < AC ) và các điểm M thuộc cạnh AC , H thuộc cạnh BC sao cho MH vuông góc BC và MH = HB . Chứng mihn AH là tia phân giác của góc A
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
Kẻ \(HI\perp AB,HK\perp AC\)
Ta có : \(\widehat{HMK}=\widehat{B}\) ( cùng phụ với \(\widehat{C}\) )
Xét \(\Delta HKM\) và \(\Delta HIB\)có :
\(\widehat{K}=\widehat{I}=90^o\)
\(HM=HB\left(gt\right)\)
\(\widehat{HMK}=\widehat{B}\left(cmt\right)\)
Suy ra \(\Delta HKM=\Delta HIB\) ( cạnh huyền - góc nhọn )
\(\Rightarrow HK=HI\) ( 2 cạnh tương ứng )
Xét \(\Delta HIA\) và \(\Delta HKA\)có :
\(\widehat{I}=\widehat{K}=90^o\)
HA : cạnh chung
HI = HK ( cmt)
Suy ra \(\Delta HIA=\Delta HKA\) ( cạnh huyền - cạnh góc vuông )
\(\Rightarrow\widehat{A}_1=\widehat{A}_2\)
Do đó AH là tia phân giác của góc A
Chúc bạn học tốt !!!