K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2019

Ta có : \(M=\left(7x+7y\right)+\left(x+\frac{4}{x}\right)+\left(2y+\frac{50}{y}\right)\)

\(\ge7\left(x+y\right)+2\sqrt{x.\frac{4}{x}}+2\sqrt{2y.\frac{50}{y}}\)

\(\ge7.7+4+20=73\)

Dấu "=" xảy ra khi x = 2; y = 5

29 tháng 11 2019

\(VT=3\left(9x^2-12x+4\right)+\frac{8x}{1-x}=27x^2-36x+12+\frac{8x}{1-x}\)

\(=27x^2-36x+4+\frac{8}{1-x}=27x^2-18x-6+8\left(1-x\right)+\frac{8}{1-x}\)

\(=27x^2-18x+3+8\left(1-x\right)+\frac{8}{1-x}-9\)

\(=3\left(3x-1\right)^2+8\left(1-x\right)+\frac{8}{1-x}-9\)

\(\Rightarrow VT\ge2\sqrt{8^2}-9=7\)

Dấu " = " xảy ra khi \(x=\frac{1}{3}\)

2 tháng 1 2021

3: \(P=\dfrac{x}{\left(x+y\right)+\left(x+z\right)}+\dfrac{y}{\left(y+z\right)+\left(y+x\right)}+\dfrac{z}{\left(z+x\right)+\left(z+y\right)}\le\dfrac{1}{4}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}\right)+\dfrac{1}{4}\left(\dfrac{y}{y+z}+\dfrac{y}{y+x}\right)+\dfrac{1}{4}\left(\dfrac{z}{z+x}+\dfrac{z}{z+y}\right)=\dfrac{3}{2}\).

Đẳng thức xảy ra khi x = y = x = \(\dfrac{1}{3}\).

28 tháng 11 2019

Cho y ở đề bài làm gì trong khi biểu thức ở vế trái bên dưới ko có y?

28 tháng 11 2019

à là \(\frac{8x}{y}\)đó

17 tháng 1 2021

Dự đoán dấu bằng: \(\hept{\begin{cases}x=2\\y=5\end{cases}}\) 

Bài làm:

Ta có: 

\(A=3x+5y+\frac{4}{x}+\frac{75}{y}\)

\(A=\left(x+\frac{4}{x}\right)+\left(3x+\frac{75}{x}\right)+2\left(x+y\right)\)

Áp dụng BĐT Cauchy cho 2 số dương ta có:

\(A\ge2\sqrt{x\cdot\frac{4}{x}}+2\sqrt{3x\cdot\frac{75}{x}}+2\cdot7\)

\(=2\cdot2+2\cdot15+14=48\)

Dấu "='' xảy ra khi: \(\hept{\begin{cases}x=2\\y=5\end{cases}}\)

Vậy Min(A) = 48 khi x = 2 và y = 5

17 tháng 1 2021

\(A=3x+5y+\frac{4}{x}+\frac{75}{y}\)

\(=2\left(x+y\right)+\left(x+\frac{4}{x}\right)+\left(3y+\frac{75}{y}\right)\)

\(\ge2\times7+2\sqrt{x\times\frac{4}{x}}+2\sqrt{3y\times\frac{75}{y}}\)( AM-GM )

\(=14+4+30=48\)

Đẳng thức xảy ra khi x = 2 ; y = 5

Vậy MinA = 48, đạt được khi x = 2, y = 5

8 tháng 12 2017

Áp dụng BĐT Cauchy-Schwaz: 

\(\left(\frac{x^3}{y^2}+\frac{9y^2}{x+2y}\right)\left[xy^2+y^2\left(x+2y\right)\right]\ge\left(x^2+3y^2\right)^2\)

\(\Leftrightarrow\frac{x^3}{y^2}+\frac{9y^2}{x+2y}\ge\frac{\left(x^2+3y^2\right)^2}{2xy^2+2y^3}\)

\(\Leftrightarrow\frac{x^3}{y^2}+\frac{9y^2}{x+2y}\ge\frac{\left(x^2+3y^2\right)^2}{2y^2\left(x+y\right)}\)        \(\left(1\right)\)

 Áp dụng BĐT AM-GM:

\(x^2+y^2\ge2xy\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)

\(\Leftrightarrow\left(x^2+y^2\right)^2\ge\left(x+y\right)^2\)

\(\Rightarrow x^2+y^2\ge x+y\)           

Do đó: Áp dụng BĐT AM-GM ngược dấu: 

   \(2y^2\left(x+y\right)\le2y^2\left(x^2+y^2\right)\le\frac{\left(x^2+y^2+2y^2\right)^2}{4}\)

\(\Leftrightarrow2y^2\left(x+y\right)\le\frac{\left(x^2+3y^2\right)^2}{4}\)               \(\left(2\right)\)

Từ (1) và (2) suy ra \(\frac{x^3}{y^2}+\frac{9y^2}{x+2y}\ge4\)   (đpcm)

Dấu "=" xảy ra khi x=y=1

Vậy \(\frac{x^3}{y^2}+\frac{9y^2}{x+2y}\ge4\)

13 tháng 6 2021

Với mọi số thực ta luôn có:

`(x-y)^2>=0`

`<=>x^2-2xy+y^2>=0`

`<=>x^2+y^2>=2xy`

`<=>(x+y)^2>=4xy`

`<=>(x+y)^2>=16`

`<=>x+y>=4(đpcm)`

13 tháng 6 2021

\(\dfrac{1}{x+3}+\dfrac{1}{y+3}=\dfrac{x+3+y+3}{\left(x+3\right)\left(y+3\right)}\)

\(=\dfrac{x+y+6}{3x+3y+13}\)(vì \(xy=4\))

=> \(\dfrac{x+y+6}{3x+3y+13}\)\(\dfrac{2}{5}\)

<=> \(5\left(x+y+6\right)\)\(2\left(3x+3y+13\right)\)

<=>\(6x+6y+26-5x-5y-30\)\(0\)

<=> \(x+y-4\)\(0\)

Áp dụng BĐT AM-GM \(\dfrac{a+b}{2}\)\(\sqrt{ab}\)

Ta có \(\dfrac{x+y}{2}\)\(\sqrt{xy}\)

<=>\(x+y\) ≥ 2\(\sqrt{xy}\)

=>2\(\sqrt{xy}-4\)\(0\)

<=> \(4-4\)≥0

<=>0≥0 ( Luôn đúng )

Vậy \(\dfrac{1}{x+3}+\dfrac{1}{y+3}\)\(\dfrac{2}{5}\)

 

22 tháng 2 2017

Áp dụng TCDTSBN ta có :

\(\frac{a-b}{x}=\frac{b-c}{y}=\frac{a-c}{z}=\frac{\left(a-b\right)+\left(b-c\right)-\left(a-c\right)}{x+y-z}=\frac{0}{x+y-z}=0\)

\(\Rightarrow\frac{a-b}{x}=0\Rightarrow a-b=0\Rightarrow a=b\) (1)

\(\Rightarrow\frac{b-c}{y}=0\Rightarrow b-c=0\Rightarrow b=c\) (2)

\(\Rightarrow\frac{a-c}{z}=0\Rightarrow a-c=0\Rightarrow a=c\) (3)

Từ (1);(2) và (3) \(\Rightarrow a=b=c\) (đpcm)

AH
Akai Haruma
Giáo viên
5 tháng 4 2021

Lời giải:

$x^3-9y^2+9x-6y=1$

$\Leftrightarrow x^3+9x=9y^2+6y+1$

$\Leftrightarrow x(x^2+9)=(3y+1)^2$

Đặt $(x,x^2+9)=d$ thì suy ra $9\vdots d(*)$

$(3y+1)^2=x(x^2+9)\vdots d^2\Rightarrow 3y+1\vdots d$. Mà $(3y+1,3)=1$ nên $(3,d)=1(**)$

Từ $(*);(**)\Rightarrow d=1$, hay $x,x^2+9$ nguyên tố cùng nhau. 

$\Rightarrow \frac{x}{x^2+9}$ là phấn số tối giản.

 

7 tháng 4 2021

giúp em lun tìm x,y em cảm ơn nhiều