K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2019

Đặt: \(\frac{a}{3}=\frac{b}{6}=\frac{c}{8}=k\)

=> a = 3. k

b = 6 . k = 2. 3. k

c = 8 k = 2 . 4. k

=> BCNN ( a; b; c ) =  3 . 2. 4 . k = 24 . k

Mà theo bài ra :  BCNN ( a; b ; c ) = 504

=> 24 k = 504 

=> k = 21.

=> a = 3. 21 = 63 ; b = 6. 21  = 126 ;  c = 8 . 21 = 168

Đặt : \(ƯCLN\left(a,b\right)=d\)

\(\Rightarrow a=d.m\)\(;\)\(b=d.n\)\(\left(m,n\in N;\left(a,b\right)=1;m>n\right)\)

\(\Rightarrow BCNN\left(a,b\right)=d.m.n\)

Ta có : \(\frac{ƯCLN\left(a,b\right)}{BCNN\left(a,b\right)}=\frac{1}{6}\)

\(\Rightarrow\frac{d}{d.m.n}=\frac{1}{6}\)

\(\Rightarrow m.n=6\)

\(\Rightarrow a-b=d\left(m-n\right)=5\)

Ta lại có : \(\left(m,n\right)=1\)\(;\)\(m.n=6\)\(;\)\(m>n\)

\(\Rightarrow\left(m,n\right)\in\left\{\left(6;1\right);\left(3;2\right)\right\}\)

Xét từng TH :

+) TH1 : \(m=6\)\(;\)\(n=1\)

\(\Rightarrow d\left(m-n\right)=5\)

\(\Rightarrow d\left(6-1\right)=5\)

\(\Rightarrow d.5=5\)

\(\Rightarrow d=1\)

\(\Rightarrow a=d.m=1.6=6\)

\(\Rightarrow b=d.n=1.1=1\)

+) TH2 : \(m=3\)\(;\)\(n=2\)

\(\Rightarrow d\left(m-n\right)=5\)

\(\Rightarrow d\left(3-2\right)=5\)

\(\Rightarrow d.1=5\)

\(\Rightarrow d=5\)

\(\Rightarrow a=d.m=5.3=15\)

\(\Rightarrow b=d.n=5.2=10\)

Vậy \(\left(a,b\right)\in\left\{\left(6;1\right);\left(15;10\right)\right\}\)

Cho mk hỏi 

BCNN(a,b)=a.b=d.n.d.m

Thì sao có thể =d.n.m được

Chúc bn học tốt

Thanks bn nhiều

27 tháng 12 2019

Câu hỏi của Trần Thị Mạnh - Toán lớp 6 - Học toán với OnlineMath

Em tham khảo nhé!

1 tháng 9 2020

Dạ em cảm ơn ạ

NV
31 tháng 8 2020

Sửa đề: \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{3}{a+b+c}\ge4\)

\(\Leftrightarrow\frac{a^2c+b^2a+c^2b}{abc}+\frac{3}{a+b+c}\ge4\)

\(\Leftrightarrow P=a^2c+b^2a+c^2b+\frac{3}{a+b+c}\ge4\)

Ta có:

\(a^2c+a^2c+b^2a\ge3\sqrt[3]{a^3.\left(abc\right)^2}=3a\)

\(b^2a+b^2a+c^2b\ge3\sqrt[3]{b^3\left(abc\right)^2}=3b\)

\(c^2b+c^2b+a^2c\ge3\sqrt[3]{c^3\left(abc\right)^2}=3c\)

Cộng vế với vế: \(a^2c+b^2a+c^2b\ge a+b+c\)

\(\Rightarrow P\ge a+b+c+\frac{3}{a+b+c}=\frac{a+b+c}{3}+\frac{3}{a+b+c}+\frac{2}{3}\left(a+b+c\right)\)

\(\Rightarrow P\ge2\sqrt{\frac{3\left(a+b+c\right)}{3\left(a+b+c\right)}}+\frac{2}{3}.3\sqrt[3]{abc}=4\)

Dấu "=" xảy ra khi \(a=b=c=1\)

17 tháng 8 2017

a) chịu

b)bó tay

c)ko biết 

d)làm bừa

17 tháng 8 2017

a)72x+72x.49=2450

72x.50=2450

72x=2450:50=49

72x=72

2x=2

x=1

b)(33:11)x=81

3x=81

3x=34

x=4

c)1/6=2/3:8x

8x=2/3:1/6

8x=4

x=1/2

d)(x+1)3=64

(x+1)3=43

x+1=4

x=3

minh chỉ lam đc vậy thôi nha !hi hi

3 tháng 12 2019

Xét a = b = c = 1 thì thỏa mãn bài ra

Xét a ,b,c khác 1. do a,b,c có vai trò như nhau nên giả sử \(a\le b\le c\)

Áp dụng BĐT cô-si cho 3 số a+b+1,1-a,1-b, ta có :

\(\left(a+b+1\right)\left(1-a\right)\left(1-b\right)\le\left(\frac{a+b+1+1-a+1-b}{3}\right)^3=1\)

\(\Rightarrow\left(1-a\right)\left(1-b\right)\le\frac{1}{a+b+1}\)

\(\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)\le\frac{1-c}{a+b+1}\)

Mà \(\frac{a}{b+c+1}\le\frac{a}{a+b+1};\frac{b}{a+c+1}\le\frac{b}{a+b+1}\)

\(\Rightarrow\frac{a}{b+c+1}+\frac{b}{a+c+1}+\frac{c}{a+b+1}\le\frac{a}{a+b+1}+\frac{b}{a+b+1}+\frac{c}{a+b+1}\)

do đó : \(\frac{a}{b+c+1}+\frac{b}{a+c+1}+\frac{c}{a+b+1}+\left(1-a\right)\left(1-b\right)\left(1-c\right)\)

\(\le\frac{a+b+c}{a+b+1}+\frac{1-c}{a+b+1}=1\)

dấu " = " xảy ra khi a = b = c = 0

vậy ...

24 tháng 6 2020

Cô ơi nếu em chưa học về mấy cái BĐT trên thì giải như nào ạ?

AH
Akai Haruma
Giáo viên
24 tháng 6 2020

Đỗ Hoàng Nhật Minh:

BĐT Cô si là dạng đơn giản nhất rồi. Nếu bạn chưa học thì bạn có thể chứng minh luôn nó ra rồi áp dụng.

Như bài phía trên, thay vì áp dụng luôn BĐT Cô-si để ra được $\frac{1}{a}+a\geq 2$ thì bạn đi chứng minh $\frac{1}{a}+a\geq 2$ bằng cách xét hiệu:

$\frac{1}{a}+a-2=\frac{a^2-2a+1}{a}=\frac{(a-1)^2}{a}\geq 0$ với mọi $a>0$

Tương tự với $\frac{1}{b}+b, \frac{1}{c}+c$

Bạn có hiểu không?