K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2019

theo tích chất dãy tỉ số bằng nhau ta có

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\Rightarrow a=b=c\)

ta có\(\frac{a^3.b^2.c^{1930}}{c^{1935}}=\frac{c^3.c^2.c^{1930}}{c^{1935}}=\frac{c^{1935}}{c^{1935}}=1\)

30 tháng 10 2016

áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
ta có : \(\frac{a}{b}=1\Rightarrow a=b\) 1
\(\frac{b}{c}=1\Rightarrow b=c\) 2
\(\frac{c}{a}=1\Rightarrow c=a\) 3
từ 1 2 3 \(\Rightarrow\) a=b=c
\(\Rightarrow\)M=\(\frac{a^3.b^2.c^{1930}}{b^{1935}}=\frac{b^3.b^2.b^{1930}}{b^{1935}}=\frac{b^{1935}}{b^{1935}}=1\)

30 tháng 10 2016

cảm ơn nha

26 tháng 10 2017

Ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

\(\Rightarrow a=b=c\)

\(\Rightarrow M=\frac{a^3.b^2.c^{1930}}{b^{1935}}=\frac{b^{1935}}{b^{1935}}=1\)

26 tháng 10 2017

Áp dụng tỉ dãy số bằng nhau:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{\left(a+b+c\right)}{b+c+a}=1\Rightarrow a=b=c\)

Khi đó: \(\frac{a^3.b^2.c^{1930}}{b^{1935}}\Leftrightarrow\frac{b^{1935}}{b^{1935}}=b^{1935}:b^{1935}=1\)

8 tháng 12 2019

Vì \(a+b+c\ne0\)\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

\(\Rightarrow a=b=c\)\(\Rightarrow M=\frac{a^3.b^2.c^{1930}}{b^{1935}}=\frac{b^3.b^2.b^{1930}}{b^{1935}}=\frac{b^{3+2+1930}}{b^{1935}}=\frac{b^{1935}}{b^{1935}}=1\)

Vậy \(M=1\)

1 tháng 10 2016

Ta có :\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\Rightarrow a=b=c\Rightarrow\frac{a^3.b^2.c^{1930}}{b^{1935}}=\frac{b^3.b^{1930}}{b^{1933}}=1\)

21 tháng 9 2018

Easy mà sao còn phải hỏi? Kiến thức cơ bản của sgk đủ giải rồi! =))

1)\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=\frac{2003+b+c}{b+c+2003}=1\Rightarrow a=b=c=2003\)

2) Ta có: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\Rightarrow a=b=c\)

Từ đó suy ra: \(\frac{a^3b^2c^{1930}}{b^{1935}}=\frac{b^3b^2b^{1930}}{b^{1935}}=\frac{b^{1935}}{b^{1935}}=1\) (do a = b =c nên ta thế a, c = b)

Đó đó: \(M=\frac{a^3b^2c^{1930}}{b^{1935}}=\frac{b^3b^2b^{1930}}{b^{1935}}=1\)

20 tháng 9 2015

Bài 1

Theo bài ra ta có 

2x=3y=6z => 2x/6=3y/6=6z/6 => x/3=y/2=z

Ap dụng tính chất của dãy tỉ số = nhau , ta có

x/3=y/2=z=x+y+z/3+2+1=1830/6( với x+y+z=1830)=305

=> x/3=305  => x= 915

   y/2=305   => y=610

   z=305

 

 

 

24 tháng 9 2017

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

=> a/b = 1 => a = b

b/c = 1 => b = c 

c/a = 1 => c = a

=> a=b=c

=> \(M=\frac{a^3.b^2.c^{1930}}{b^{1935}}=\frac{b^3.b^2.b^{1930}}{b^{1935}}=\frac{b^{1935}}{b^{1935}}=1\)

26 tháng 9 2015

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)

Áp dụng tính chất của dãy tỉ số bằng nhau có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

=> a = b = c (a; b; c khác 0 vì b; a; c là các mẫu số)

=> \(M=\frac{a^2b^2c^{1930}}{b^{1935}}=\frac{b^2b^2b^{1930}}{b^{1935}}=\frac{b^{1934}}{b^{1935}}=\frac{1}{b}\)

Mà a = b = c

=> \(M=\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\)