1. Tìm số tự nhiên x biết:
a) \(\left(x-140\right):7=^{3^3}-^{2^3.3}\)
b) \(^{2^x:2^5=}1\)
2. Tìm tất cả các cặp số tự nhiên (x, y) sao cho : \(^{6^x+99=20.y}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Nhận thấy x = 1 không là nghiệm của phương trình nên ta xét \(x\ge2\)
Do đó , y là số lẻ
Mà 12x , y2 \(\equiv1\left(mod8\right)\)
Suy ra 5x \(\equiv1\left(mod8\right)\)
=> x chẵn
Đặt x = 2k (k > 0)
=> 52k = (y - 12k)(y + 12k)
Mặt khác , 5 là số nguyên tố nên tồn tại một số m,m < k thõa : y + 12k = 52k - m
và y - 12k = 5m
=> 2.12k = 5m(52k - 2m - 1)
Nhận thấy : 2 và 12 là hai số nguyên tố cùng nhau với 5
=> 52k + 122k = (12k + 1)2
Mà 2.12k = 5m => m = 0 và y = 12k + 1
=> 2.12k = 25k - 1
Tìm từng giá trị của k thấy k = 1 thõa mãn phương trình
Vậy x = 2 , y = 13
b) Dùng nhị thức Newton , ta khai triển hai hạng tử được
\(\left(2+\sqrt{3}\right)^{2016}+\left(2-\sqrt{3}\right)^{2016}=2^{2016}+2^{2016}+3^{1008}+3^{1008}=2\left(2^{2016}+3^{1008}\right)⋮2\)
Vậy ......
2,Giải:
♣ Ta thấy p = 2 thì 2p + 1 = 5 không thỏa = n³
♣ Nếu p > 2 => p lẻ (Do Số nguyên tố chẵn duy nhất là 2 )
Mặt khác : 2p + 1 là 1 số lẻ => n³ là một số lẻ => n là một số lẻ
=> 2p + 1 = (2k + 1)³ ( với n = 2k + 1 )
<=> 2p + 1 = 8k³ + 12k² + 6k + 1
<=> p = k(4k² + 6k + 3)
=> p chia hết cho k
=> k là ước số của số nguyên tố p.
Do p là số nguyên tố nên k = 1 hoặc k = p
♫ Khi k = 1
=> p = (4.1² + 6.1 + 3) = 13 (nhận)
♫ Khi k = p
=> (4k² + 6k + 3) = (4p² + 6p + 3) = 1
Do p > 2 => (4p² + 6p + 3) > 2 > 1
=> không có giá trị p nào thỏa.
Đáp số : p = 13
d 10^n+72^n -1
=10^n -1+72n
=(10-1) [10^(n-1)+10^(n-2)+ .....................+10+1]+72n
=9[10^(n-1)+10^(n-2)+..........................-9n+81n
bạn ấy hỏi bạn à ?? mà chưa học đừng trả lời, ng ta hỏi người học rồi chứ tưởng hỏi bạn hay sao mà kêu chưa học??
1.
a) ( x - 140) : 7 = 33 - 23 x 3
=>( x - 140) : 7 = 27 - 8 x 3
( x - 140) :7 = 27 - 24
( x - 140) : 7 = 3
x - 140 = 3 x 7
x - 140 = 21
x = 21 + 140
x = 161
b) 2x : 25 = 1
2x - 5 = 1
=>2x - 5 = 20
=> x - 5 = 0
x = 0 + 5
x = 5