Giả sử x , y , z là những số dương thỏa mãn điều kiện x + y + z = 1 , tìm giá trị lớn nhất của
biểu thức P = \(\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\).Áp dụng BĐT Cauchy-Schwarz,ta có:
\(=\left(1-\frac{1}{x+1}\right)+\left(1-\frac{1}{y+1}\right)+\left(1-\frac{1}{z+1}\right)\)
\(=\left(1+1+1\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
\(\ge3-\frac{9}{\left(x+y+z\right)+\left(1+1+1\right)}=\frac{3}{4}\)
Dấu "=" xảy ra khi x = y = z = 1/3
Vậy A min = 3/4 khi x=y=z=1/3
Vì xyz=1\(\Rightarrow x^2\left(y+z\right)\ge2x^2\sqrt{yz}=2x\sqrt{x}\)
Tương tự \(y^2\left(z+x\right)\ge2y\sqrt{y};z^2=\left(x+y\right)\ge2z\sqrt{z}\)
\(\Rightarrow P\ge\frac{2x\sqrt{x}}{y\sqrt{y}+2z\sqrt{z}}+\frac{2y\sqrt{y}}{z\sqrt{z}+2x\sqrt{x}}+\frac{2z\sqrt{z}}{x\sqrt{x}+2y\sqrt{y}}\)
Đặt \(x\sqrt{x}+2y\sqrt{y}=a;y\sqrt{y}+2z\sqrt{z}=b;z\sqrt{z}+2x\sqrt{x}=c\)
\(\Rightarrow x\sqrt{x}=\frac{4c+a-2b}{9};y\sqrt{y}=\frac{4a+b-2c}{9};z\sqrt{z}=\frac{4b+c-2a}{9}\)
\(\Rightarrow P\ge\frac{2}{9}\left(\frac{4c+a-2b}{b}+\frac{4a+b-2c}{a}+\frac{4b+c-2a}{b}\right)\)
\(=\frac{2}{9}\text{ }\left[4\left(\frac{c}{b}+\frac{a}{c}+\frac{b}{a}\right)+\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)-6\right]\ge\frac{2}{9}\left(4.3+2-6\right)=2\)
Min P =2 khi và chỉ khi a=b=c khi va chỉ khi x=y=z=1
Ta sẽ c/m: \(\frac{x}{x+1}\le\frac{9}{16}x+\frac{1}{16}\)
\(\Leftrightarrow\frac{x}{x+1}-\frac{9}{16}x-\frac{1}{16}\le0\)
\(\Leftrightarrow\frac{-\left(3x-1\right)^2}{16\left(x+1\right)}\le0\) (đúng)
Thiết lập tương tự hai BĐT còn lại và cộng theo vế ta được: \(Q\le\frac{9}{16}\left(x+y+z\right)+\frac{3}{16}=\frac{9}{16}+\frac{3}{16}=\frac{3}{4}\)
Vậy Q max = 3/4 khi x = y =z =1/3
bài này có lập được bảng biến thiên, nhưng chắc chưa học nên làm cách cơ bản
ta có \(\frac{x^2}{x^2+yz+x+1}\le\frac{x^2}{2x\sqrt{yz+1}+x}=\frac{x}{2\sqrt{yz+1}+1}\) dấu "=" xảy ra khi x2=yz+1
ta lại có \(2=x^2+y^2+z^2=\left(x+y+z\right)^3-2x\left(y+z\right)-2yz\ge\left(x+y+z\right)^3-\frac{\left(x+y+z\right)^2}{2}-2yz\)
\(\Rightarrow\left(x+y+z\right)^2\le4\left(1+yz\right)\Rightarrow x+y+z\le2\sqrt{1+yz}\)
\(\Rightarrow\frac{y+z}{x+y+z+1}=1-\frac{x+1}{x+y+z+1}\le1-\frac{x+1}{2\sqrt{yz+1}+1}\)
do đó \(P\le\frac{x}{2\sqrt{yz+1}+1}+1-\frac{x+1}{2\sqrt{yz+1}+1}-\frac{1+yz}{9}=1-\frac{1}{2\sqrt{yz+1}+1}-\frac{1+yz}{9}\)
\(\le1-\frac{1}{yz+1+1+1}-\frac{1+yz}{9}=\frac{11}{9}-\left(\frac{1}{yz+3}+\frac{yz+3}{9}\right)\le\frac{11}{9}-\frac{2}{3}=\frac{5}{9}\)
dấu "=" xảy ra khi \(\orbr{\begin{cases}x=1;y=1;z=0\\x=1;y=0;z=1\end{cases}}\)
Câu hỏi của phan tuấn anh - Toán lớp 9 - Học toán với OnlineMath cái này y hệt, tham khảo đi nếu vẫn chưa làm dc thì nhắn cho mk
Ta co:
\(P=\Sigma_{cyc}\frac{x}{x+1}=3-\Sigma_{cyc}\frac{1}{x+1}\le3-\frac{9}{x+y+z+3}=\frac{9}{4}\)
Dau '=' xay ra khi \(x=y=z=\frac{1}{3}\)