Cho tam giác nhọn ABC (AB<AC). Gọi D là trung điểm AB
E là trung điểm AC
M là trung điểm BC
a) tứ giác BDEC là hình gì? tại sao?
b) chứng minh tứ giác BDEM là hình bình hành
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn (O;K) có BD là đường kính và đường cao AH của tam giác ABC cắt (O;K) tại E đề nek
đề đây nha mn :(( cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn (O;K) có BD là đường kính và đường cao AH của tam giác ABC cắt (O;K) tại E
Cho tam giác ABC nhọn AB<AC M là trung điểm của BC trên tia đời của tia MA có điểm E s cho AM=ME
a) cmr tam giác AMB=CMR
b từ A kẻ D s cho HA =HD cmr CE = BP
c cmr CE = CD tam giác AMD là tam giác j vì s
D CMR AM NHỎ HƠN AB +AC /2
CHỈ LM MỖI Ý D THUI NHA NHANH NHA
a: Xét ΔAMB và ΔEMC có
MA=ME
góc AMB=góc EMC
MB=MC
=>ΔAMB=ΔEMC
b: Xet ΔBAD có
BH vừa là đường cao, vừa là trung tuyến
=>ΔBAD cân tại B
=>BD=BA=CE
c: Xet ΔMAD có
MH vừa là đường cao,vừa là trung tuyến
=>ΔMAD cân tại M
d: AM<1/2(AB+AC)
=>AE<AB+AC
=>AE<BE+AB(luôn đúng)
a, Vì D,E là trung điểm AB,AC nên DE là đtb tg ABC
Do đó \(DE=\dfrac{1}{2}BC;DE//BC\)
Vậy BDEC là hình thang
b, Vì \(DE=\dfrac{1}{2}BC\) nên \(DE=BM\left(=\dfrac{1}{2}BC\right)\)(do M là trung điểm BC)
Mà DE//BC nên DE//BM
Do đó BDEM là hình bình hành