tìm 3 số x,y,z thỏa mãn (2x + 5y + 1).(2^|x| +y + x^2 +x)=105
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\( (2x+5y+1).(2^{|x|}+y+ x^2 +x)=105\)
Vì 105 là số lẻ nên 2x+5y+1 và 2|x|+y+x2+x cũng là số lẻ.
Có: 2x+5y+1 là số lẻ. Mà 2x+1 là số lẻ
\(\Rightarrow\)5y là số chẵn
\(\Rightarrow\)y là số chắn
Có 2|x|+y+x2+x là só lẻ. Mà x2+x=x(x+1) là tích 2 số tự nhiên liên tiếp nên là số chắn, y cũng là số chẵn
\(\Rightarrow\)2|x| là số lẻ
\(\Rightarrow\)x=0
Thay x=0 vào biểu thức ta có:
\(\left(2.0+5y+1\right)\left(2^{\left|0\right|}+y+0^2+0\right)=105\)
\(\Leftrightarrow\left(0+5y+1\right)\left(1+y+0\right)=105\)
\(\Leftrightarrow\left(5y+1\right)\left(1+y\right)=105\)
\(\Leftrightarrow5y+5y^2+1+y=105\)
\(\Leftrightarrow5y^2+6y+1=105\)
\(\Leftrightarrow5y^2+6y-104=0\)
\(\Leftrightarrow5y^2-20y+26y-104=0\)
\(\Leftrightarrow5y\left(y-4\right)+26\left(y-4\right)=0\)
\(\Leftrightarrow\left(y-4\right)\left(5y+26\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}y-4=0\\5y+26=0\end{cases}\Leftrightarrow\orbr{\begin{cases}y=4\\y=\frac{-26}{5}\end{cases}}}\)
Mà \(x;y\in Z\Rightarrow y=4\)
Vậy x=0;y=4(tmyc)
đậu xanh đậu đỏ
đậu đen đậu vàng
bạn ơi cùng đậu
xem vui không nào...
đặt\(A=\dfrac{x^3}{2x+3y+5z}+\dfrac{y^3}{2y+3z+5x}+\dfrac{z^3}{2z+3x+5y}\)
\(=>A=\dfrac{x^4}{2x^2+3xy+5xz}+\dfrac{y^4}{2y^2+3yz+5xy}+\dfrac{z^4}{2z^2+3xz+5yz}\)
BBDT AM-GM
\(=>A\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)}\)
theo BDT AM -GM ta chứng minh được \(xy+yz+xz\le x^2+y^2+z^2\)
vì \(x^2+y^2\ge2xy\)
\(y^2+z^2\ge2yz\)
\(x^2+z^2\ge2xz\)
\(=>2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)< =>xy+yz+xz\le x^2+y^2+z^2\)
\(=>2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)\le10\left(x^2+y^2+z^2\right)\)
\(=>A\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{10\left(x^2+y^2+z^2\right)}=\dfrac{x^2+y^2+z^2}{10}=\dfrac{\dfrac{1}{3}}{10}=\dfrac{1}{30}\left(đpcm\right)\)
dấu"=" xảy ra<=>x=y=z=1/3
Tham khảo câu hỏi của White Boy nhé ~"Huy"