Chứng tỏ rằng 22016>22015+22014+22013
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2^{x+1}\cdot2^{2014}=2^{2015}\\ 2^{x+1}=2^{2015}:2^{2014}\\ 2^{x+1}=2\\ =>x+1=1\\ x=1-1\\ x=0\)
\(S=1-2+2^2-2^3+...+2^{2012}-2^{2013}\)
\(\Rightarrow2S=2-2^2+2^3-2^4+...+2^{2013}-2^{2014}\)
\(\Rightarrow2S+S=2-2^2+2^3-...-2^{2014}+1-2^2-2^3+...-2^{2013}\)
\(\Rightarrow3S=1-2^{2014}\)\(\Rightarrow3S-2^{2014}=1-2^{2015}\)
Ta có 2 + 1 2017 = C 2017 0 .2 2017 + C 2017 1 .2 2016 + ... + C 2017 2017 .2 0
2 − 1 2017 = C 2017 0 .2 2017 + C 2017 1 .2 2016 . − 1 + ... + C 2017 2017 .2 0 . − 1 2017
Trừ từng vế hai đẳng thức trên ta được:
3 2017 − 1 = 2 C 2017 1 .2 2016 + C 2017 3 .2 2014 + ... + C 2017 2017 .2 0
Vậy M = 3 2017 − 1 2
Chọn đáp án D.
ta có: \(S=1-2+2^2-2^3+2^4-2^5+...+2^{2013}-2^{2014}\)
\(\Rightarrow2S=2-2^2+2^3-2^4+2^5-2^6+...+2^{2014}-2^{2015}\)
=> 2S + S = -22015 + 1
=> 3S = -22015 + 1
=> 3S - 1 = -22015
=> 1 - 3S = 22015
( cn về S = 1 - 2 + 22 - 23 + 24-25+...+22013 - 22014 mk vx chưa hiểu quy luật của nó lắm, thật lòng xl bn nha! mk chỉ bk z thoy!)
Ta có : 22016 = 22013.23 = 22013.8
Lại có : 22015 + 22014 + 22013 = 22013.(22 + 2 + 1) = 22013.7
Vì 7 < 8
=> 22013.8 < 22013.7
=> 22016 < 22015 + 22014 + 22013 = 22013 (đpcm)