K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2020

hình bạn tự vẽ

Tam giác ABC tương ứng với a,b,c độ dài các cạnh

từ B dựng đường thẳng song song với tia phân giác AD cắt đường thẳng CA tại E,ta có AE = AB = c

Do AD//BE nên  \(\frac{x}{BE}=\frac{b}{b+c}\Rightarrow x=\frac{b}{b+c}.BE\)

Trong tam giác ABE ta có : EB < AB + AE = 2c

vì thế \(x< \frac{2bc}{b+c}\Rightarrow\frac{1}{x}>\frac{1}{2}\left(\frac{1}{b}+\frac{1}{c}\right)\)

Tương tự :  \(\frac{1}{y}>\frac{1}{2}\left(\frac{1}{c}+\frac{1}{a}\right)\)\(\frac{1}{z}>\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)

Cộng lại ta được đpcm

6 tháng 6 2015

chờ năm sau mjk lên lớp 9 mjk giải cho

7 tháng 5 2018

Bài này của học sinh giỏi chuyên toán mà 

8 tháng 4 2020

a) Gọi AD là tia phân giác của \(\widehat{BAC}\left(D\in BC\right)\)

Qua B vẽ đường thẳng song song với AD cắt AC tại M

Ta có: \(\widehat{ABM}=\widehat{BAD};\widehat{AMB}=\widehat{DAC}\)

Mà \(\widehat{BAD}=\widehat{DAC}\)(vì AD là phân giác \(\widehat{BAC}\))

=> \(\widehat{AMB}=\widehat{ABM}\) nên \(\Delta\)ABM cân tại A)

Từ đó có AM=AB=c. \(\Delta\)ABM có: MB<AM+AB=2c

\(\Delta\)ADC có: MB//AD, nên \(\frac{AD}{AB}=\frac{AC}{MC}\) (hệ quả định lý Ta-let)

do đó \(AD=\frac{AC}{MC}\cdot MB< \frac{AC}{AC+AM}\cdot2bc=\frac{2bc}{b+c}\)

b) Cmtt câu a) ta có: \(\hept{\begin{cases}y< \frac{2ca}{c+a}\\z< \frac{2ab}{a+b}\end{cases}}\)

Do đó: \(\hept{\begin{cases}\frac{1}{x}>\frac{1}{2}\left(\frac{1}{b}+\frac{1}{c}\right)\\\frac{1}{y}>\frac{1}{2}\left(\frac{1}{a}+\frac{1}{c}\right)\\\frac{1}{z}>\frac{1}{2}\left(\frac{1}{b}+\frac{1}{a}\right)\end{cases}\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}\)

13 tháng 1 2019

A B C E D b c x b

Giả sử AB=c,BC=a,CA=b; đường phân giác AD có độ dài x. Qua C kẻ đường thẳng song song với AD cắt tia BA tại E.

Dễ thấy: ^ACE = ^AEC (=^BAC/2) => \(\Delta\)ACE cân tại A => AC=AE=b => CE < 2b (BĐT tam giác)

Theo hệ quả ĐL Thales: \(\frac{AD}{CE}=\frac{BA}{BE}\)(Do AD // CE) hay \(\frac{x}{CE}=\frac{c}{b+c}\Rightarrow x=\frac{c.CE}{b+c}\)

Mà BE < 2b nên \(x< \frac{2bc}{b+c}\). Tương tự thì \(y< \frac{2ca}{c+a};z< \frac{2ab}{a+b}\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{2}\left(\frac{1}{b}+\frac{1}{c}\right)+\frac{1}{2}\left(\frac{1}{c}+\frac{1}{a}\right)\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) (đpcm).