Cho tam giác ABC có góc B bằng góc C. Tia phân giác của góc B cắt AC ở D. Tia phân giác của góc C cắt AB ở E. Chứng tỏ BD = CE.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét t/g ABC có \(\widehat{ABC}=\widehat{ACB}\)
=> t/g ABC cân tại A.
=> AB = AC (t/c).
Có \(\widehat{ABC}=\widehat{ACB}\)
=> \(\dfrac{\widehat{ABC}}{2}=\dfrac{\widehat{ACB}}{2}\)
=> \(\widehat{ABD}=\widehat{ACE}\) (do BD, CE là pg góc B vafC)
Xét t/g ABD và t/g ACE có
\(\widehat{A}\) :chung
AB = AC (cmt)
\(\widehat{ABD}=\widehat{ACE}\)
=> t/g ABD = t/g ACE (g.c.g)
=> BD = CE (2 cạnh t/ứ).
a)Vì \(\widehat{B}\)=\(\widehat{C}\)nên tam giác ABC cân tại A => AB=AC (1). Mặt khác, \(\widehat{B_1}\)=\(\frac{1}{2}\)\(\widehat{ABC}\), \(\widehat{C_1}\)=\(\frac{1}{2}\)\(\widehat{ACB}\)=> \(\widehat{B_1}\)= \(\widehat{C_1}\)(2).
Từ (1),(2) và \(\widehat{A}\) chung=> tam giác ABD=ACE=> BD=CE; AE=AD ; \(\widehat{E_1}\)=\(\widehat{D_1}\)
b) Vì \(\widehat{E_1}\)=\(\widehat{D_1}\)=>\(\widehat{E_2}\)=\(\widehat{D_2}\)(3); từ (1) và AE=AD => EB=DC(4)
Từ (2),(3),(4) => tam giác EBK=DCK(g.c.g)
a: Xét ΔABC có \(\widehat{B}=\widehat{C}\)
nên ΔABC cân tại A
tam giác ABC có góc B=góc C
=> tam giác ABC cân tại A
=> AB=AC
Ma goc ACE = 1/2 ACB
góc ABD = 1/2 ABC (Vì CE và BD là tia phân giác của góc ACB và ABC)
ma ACB=ABC
=> ACE=ABD
Xét tam giác ABD và tam giác ACE
Có AB=AC(chứng minh trên)
goc A chung
ABD=ACE (chứng minh trên)
=> BD=CE (2 góc tương ứng)
mình là màu xanh cho đồng cỏ còn bạn là màu đỏ trong tim mình >_<