trong mặt phẳng Oxy cho tam giác ABC có điểm A(6;5); B(-1;-1) C(2;0)
a) Tìm toạ độ trực tâm H của tam giác
b) Tìm điểm N trên Ox sao cho tam giác ABN vuông tại N
mọi người giải giúp e với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\overrightarrow{AB}=\left(4;2\right)=2\left(2;1\right)\Rightarrow AB=2\sqrt{5}\)
Đường thẳng AB nhận (1;-2) là 1 vtpt nên pt có dạng:
\(1\left(x+1\right)-2\left(y-2\right)=0\Leftrightarrow x-2y+5=0\)
\(\overrightarrow{AC}=\left(2;-8\right)=2\left(1;-4\right)\Rightarrow AC=2\sqrt{17}\)
Đường thẳng AC nhận (4;1) là 1 vtpt nên pt có dạng:
\(4\left(x+1\right)+1\left(y-2\right)=0\Leftrightarrow4x+y+2=0\)
Gọi \(M\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}S_{MAB}=\dfrac{1}{2}d\left(M;AB\right).AB\\S_{MAC}=\dfrac{1}{2}d\left(M;AC\right).AC\end{matrix}\right.\)
\(S_{MAB}=S_{MAC}=d\left(M;AB\right).AB=d\left(M;AC\right).AC\)
\(\Leftrightarrow\dfrac{\left|x-2y+5\right|}{\sqrt{1+\left(-2\right)^2}}.2\sqrt{5}=\dfrac{\left|4x+y+2\right|}{\sqrt{4^2+1^2}}.2\sqrt{17}\)
\(\Leftrightarrow\left|x-2y+5\right|=\left|4x+y+2\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}4x+y+2=x-2y+5\\4x+y+2=-x+2y-5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+y-1=0\\5x-y+7=0\end{matrix}\right.\)
Vậy quỹ tích M là 2 đường thẳng có pt: \(\left[{}\begin{matrix}x+y-1=0\\5x-y+7=0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(-1;-2\right)\\\overrightarrow{AC}=\left(4;-2\right)\end{matrix}\right.\)
\(\Rightarrow\overrightarrow{AB}.\overrightarrow{AC}=-1.4+\left(-2\right).\left(-2\right)=0\)
\(\Rightarrow\Delta ABC\) vuông tại A
Ta có B A → = 3 ; − 1 và B C → = − 4 ; − 2 . Suy ra:
cos B A → , B C → = B A → . B C → B A → . B C → = 3. − 4 + − 1 . − 2 9 + 1 . 16 + 4 = − 2 2 ⇒ B ^ = B A → , B C → = 135 O .
Chọn D.
Do C thuộc Ox nên tọa độ có dạng: \(C\left(x;0\right)\)
Do trọng tâm G thuộc Oy \(\Rightarrow x_G=0\)
Mà \(x_A+x_B+x_C=3x_G\)
\(\Rightarrow1+\left(-3\right)+x=3.0\)
\(\Rightarrow x=2\)
\(\Rightarrow C\left(2;0\right)\)
vecto AB=(-7;0)
vecto DC=(3-x;5-y)
Vì ABCD là hình bình hành
nên vecto AB=vecto DC
=>3-x=-7; 5-y=0
=>x=10; y=5
Do C thuộc trục tung nên tọa độ có dạng \(C\left(0;c\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(-4;-1\right)\\\overrightarrow{AC}=\left(-1;c-2\right)\end{matrix}\right.\)
Do tam giác ABC vuông tại A \(\Rightarrow\overrightarrow{AB}.\overrightarrow{AC}=0\)
\(\Rightarrow4-\left(c-2\right)=0\Rightarrow c=6\)
\(\Rightarrow C\left(0;6\right)\)
\(\Rightarrow\overrightarrow{AC}=\left(-1;4\right)\Rightarrow\left\{{}\begin{matrix}AB=\sqrt{\left(-4\right)^2+\left(-1\right)^2}=\sqrt{17}\\AC=\sqrt{\left(-1\right)^2+4^2}=\sqrt{17}\end{matrix}\right.\)
\(\Rightarrow S_{ABC}=\dfrac{1}{2}AB.AC=\dfrac{17}{2}\)
dùng công thức : căn của (x1-x2)^2 + (y1-y2)^2 là ra khoảng cách giữa 2 điểm, tìm 3 khoảng cách rồi suy ra tam giác đều