K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2021

c) BM cắt Ax tại E.BC cắt MH tại I

Vì AB là đường kính nên \(\angle AMB=90\)

Vì CM,CA là tiếp tuyến nên \(CM=CA\)

Ta có tam giác AME vuông tại M có \(CM=CA\Rightarrow C\) là trung điểm AE

Vì \(MH\parallel AE(\bot AB)\) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{IH}{AC}=\dfrac{BI}{BC}\\\dfrac{IM}{CE}=\dfrac{BI}{BC}\end{matrix}\right.\Rightarrow\dfrac{IH}{AC}=\dfrac{IM}{CE}\)

mà \(AC=CE\Rightarrow IH=IM\) nên ta có đpcm

undefined

a: Xét (O) có

OM là bán kính

EF vuông góc OM tại M

Do đó: EF là tiếp tuyến của (O)

b: Xét (O) có

EM.EA là tiếp tuyến

nên EM=EA
Xét(O) có

FM,FB là tiếp tuyến

nên FM=FB

EF=EM+MF

=>EF=EA+FB

31 tháng 12 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Theo tính chất tiếp tuyến, ta có:

Ax ⊥ AB

By ⊥ AB

Suy ra: Ax // By hay AC // BD

Suy ra tứ giác ABDC là hình thang

Gọi I là trung điểm của CD

Khi đó OI là đường trung bình của hình thang ABDC

Suy ra: OI // AC ⇒ OI ⊥ AB

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Suy ra: IC = ID = IO = (1/2).CD (tính chất tam giác vuông)

Suy ra I là tâm đường tròn đường kính CD. Khi đó O nằm trên đường tròn tâm I đường kính CD và IO vuông góc với AB tại O.

Vậy đường tròn có đường kính CD tiếp xúc với AB tại O.

a: góc EAO+góc EMO=180 độ

=>EAOM nội tiếp

b: góc AMB=1/2*sđ cung AB=90 độ

Xét (O) co

EM,EA là tiếptuyến

=>EM=EA

mà OM=OA

nên OE là trung trực của AM

=>OE vuông góc AM tại P

Xét (O) có

FM,FB là tiếptuyến

=>FM=FB

=>OF là trung trực của MB

=>OF vuông góc MB tại Q

góc MPO=góc MQO=góc PMQ=90 độ

=>MPOQ là hình chữ nhật

22 tháng 8 2021

Kẻ OI  AB ( I  CD) ta suy ra OI là đường trung bình của hình thang ABCD và CI = ID.

Khi đó I là tâm đường tròn đường kính CD và IO là khoảng cách d từ tâm I đến AB.

Ta có IO=CA+DB2 =MC+MD2 =DC2  là bán kính của đường tròn (I).

Do đó AB tiếp xúc với đường tròn đường kính CD.

22 tháng 8 2021

Kẻ OI \bot AB ( I \in CD) ta suy ra OI là đường trung bình của hình thang ABCD và CI = ID.

Khi đó I là tâm đường tròn đường kính CD và IO là khoảng cách d từ tâm I đến AB.

Ta có IO=\dfrac{CA+DB}{2}=\dfrac{MC+MD}{2}=\dfrac{DC}{2} là bán kính của đường tròn (I).

Do đó AB tiếp xúc với đường tròn đường kính CD.