K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2018

áp dụng t/c dãy tỉ số bằng nhau ta có:

1+3y/12=1+7y/4x=2+10y/12+4x=2(1+5y)/2(6+2x)

=1+5y/6+2x

do đó : 1+5y/6+2x=1+5y/5x<=>6+2x=5x<=>6=5x-2x

                                                             <=>3x=6=>x=2

Vậy x=2. chúc bạn học tốt

10 tháng 7 2018

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{2}\) hay \(\frac{2x}{4}=\frac{3y}{9}=\frac{z}{2}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

       \(\frac{2x}{4}=\frac{3y}{9}=\frac{z}{2}=\frac{2x-3y}{4-9}=\frac{100}{-5}=-20\)

suy ra:  \(\frac{2x}{4}=-20\)\(\Rightarrow\)\(x=-40\)

              \(\frac{3y}{9}=-20\)\(\Rightarrow\)\(y=-60\)

              \(\frac{z}{2}=-20\)\(\Rightarrow\)\(z=-40\)

Vậy....

10 tháng 7 2018

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{2}hay\frac{2x}{4}=\frac{3y}{9}=\frac{z}{2}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có

\(\frac{2x}{4}=\frac{3y}{9}=\frac{z}{2}=\frac{2x-3y}{4-9}=\frac{100}{-5}=-20\)

\(\Leftrightarrow\frac{2x}{4}=-20\Rightarrow x=-40\)

\(\frac{3y}{9}=-20\Rightarrow y=-60\)

\(\frac{z}{2}=-20\Rightarrow z=-40\)

Vậy..............................

16 tháng 8 2016

Dùng BĐT B.c.s ta có:

\(\frac{x}{x+\sqrt{3x+yz}}=\frac{x}{x+\sqrt{\left(x+y\right)\left(x+z\right)}}\)

\(\le\frac{x}{x+\sqrt{xy}+\sqrt{xz}}=\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

Tương tự rồi cộng lại ta có Đpcm

Dấu = khi \(x=y=z=1\)

16 tháng 8 2016

Đọc k ra thì thôi đừng trách mk chữ xấu =))

14 tháng 1 2018

(x-1)(x-2)>0

=>x-1 và x-2 cùng dấu

TH1: \(\hept{\begin{cases}x-1>0\\x-2>0\end{cases}\Rightarrow\hept{\begin{cases}x>1\\x>2\end{cases}\Rightarrow}x>2}\)

TH2: \(\hept{\begin{cases}x-1< 0\\x-2< 0\end{cases}\Rightarrow\hept{\begin{cases}x< 1\\x< 2\end{cases}\Rightarrow}x< 1}\)

14 tháng 11 2016

tao chịu ko hiểu mới học lớp 6 nhé very sorrrrrrrrrrrrrryyyyyyyyyyyyyyyyyyyyyy

14 tháng 11 2016

k nha

ai km ình k lai có 21 nick đó

10 tháng 1 2021

\(P=\frac{x+y}{xyz}=\frac{x}{xyz}+\frac{y}{xyz}=\frac{1}{yz}+\frac{1}{xz}\)

Áp dụng Bunyakovsky dạng phân thức : \(\frac{1}{yz}+\frac{1}{xz}\ge\frac{4}{z\left(x+y\right)}\)(1)

Ta có : \(\sqrt{z\left(x+y\right)}\le\frac{x+y+z}{2}\)( theo AM-GM )

=> \(z\left(x+y\right)\le\left(\frac{x+y+z}{2}\right)^2=\left(\frac{6}{2}\right)^2=9\)

=> \(\frac{1}{z\left(x+y\right)}\ge\frac{1}{9}\)=> \(\frac{4}{z\left(x+y\right)}\ge\frac{4}{9}\)(2)

Từ (1) và (2) => \(P=\frac{x+y}{xyz}=\frac{1}{yz}+\frac{1}{xz}\ge\frac{4}{z\left(x+y\right)}\ge\frac{4}{9}\)

=> P ≥ 4/9

Vậy MinP = 4/9, đạt được khi x = y = 3/2 ; z = 3

8 tháng 7 2018

Ta có : 

\(\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}< \frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}\)

\(\Rightarrow S< \frac{3}{10}.5\)

\(\Rightarrow S< 1,5\left(1\right)\)

Lại có : 

\(\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}>\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}\)

\(\Rightarrow S>\frac{3}{15}.5\)

\(\Rightarrow S>1\left(2\right)\)

Từ ( 1 ) ; ( 2 ) 

\(\Rightarrow1< S< 1,5\)

\(\Rightarrow S\)ko phải là STN 

8 tháng 7 2018

Hỏa Long Natsu ơi, bạn giải giúp mình một bài nữa đi