tìm các số có ba chữ số chia hết cho 7 và tổng các chữ số của nó cũng chia hết cho 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ví dụ: a) cho số 714
-có (7.3 + 1) - 3.7 = 1
-có (1.3 + 4) - 7 = 0
Vậy số 714 chia hết cho 7.
ví dụ 1 :cho số 714 thì có tất cả 714 số chia hết cho7 ,bạn cứ thế mà làm nha,trường tớ suốt ngày tập võ cổ truyền ,mệt zá
Quy tắc thứ nhất: Lấy chữ số đầu tiên bên trái nhân với 3 rồi cộng với chữ số thứ hai rồi trừ cho bội của 7; được bao nhiêu nhân với 3 cộng với chữ số thứ 3 rồi trừ cho bội củ 7; được bao nhiêu nhân với 3 cộng với chữ số thứ 4 rồi trừ cho bội của 7; .... Nếu kết quả cuối cùng là một số chia hết cho 7 thì số đã cho chia hết cho 7.
Ví dụ: a) cho số 714
-có (7.3 + 1) - 3.7 = 1
-có (1.3 + 4) - 7 = 0
Vậy số 714 chia hết cho 7.
Kểm tra thấy: 714 = 7.102
b) cho số 24668
-có (2.3 + 4) - 7 = 3
-tiếp theo (3.3 + 6) - 2.7 = 1
-tiếp theo (1.3 + 6) - 7 = 2
-cuối cùng 2.3 + 8 = 14 chia hết cho 7
Vậy số 24668 chia hết cho 7
Kiểm tra thấy: 24668 = 7.3524
ko tính đề nha
\(=\frac{x+y+z}{2x+y+z}\)
\(=\frac{1}{2}\)
Lẽ ra đề phải là chứng minh \(\frac{x}{2x+y+z}+\frac{y}{2y+x+z}+\frac{z}{2z+y+x}\le\frac{3}{4}\), nên ta có \(:\)
\(\frac{x}{2x+y+z}+\frac{y}{2y+x+z}+\frac{z}{2z+x+y}=\frac{1}{2}\cdot\frac{x}{x+y+z}+\frac{1}{2}\cdot\frac{y}{x+y+z}+\frac{1}{2}\cdot\frac{z}{x+y+z}\)
\(=\frac{1}{2}\cdot\frac{x+y+z}{x+y+z}=\frac{1}{2}\)
\(\Rightarrow\frac{1}{2}< \frac{3}{4}\left(đpcm\right)\)
Quy tắc thứ nhất: Lấy chữ số đầu tiên bên trái nhân với 3 rồi cộng với chữ số thứ hai rồi trừ cho bội của 7; được bao nhiêu nhân với 3 cộng với chữ số thứ 3 rồi trừ cho bội củ 7; được bao nhiêu nhân với 3 cộng với chữ số thứ 4 rồi trừ cho bội của 7; .... Nếu kết quả cuối cùng là một số chia hết cho 7 thì số đã cho chia hết cho 7.
Ví dụ: a) cho số 714
-có (7.3 + 1) - 3.7 = 1
-có (1.3 + 4) - 7 = 0
Vậy số 714 chia hết cho 7.
Kểm tra thấy: 714 = 7.102
còn 1 số số 133; 266; 322; 329; 392; 399; 455; 511; 518; 581; 588; 644; 777; 833; 966
:))