tìm gtln hay gtnn nếu có
\(D=\frac{x^2+15}{x^2+3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4
--> Pmin=4 khi x=4
2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1
=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6
<=> M=2t2+t-4\(\ge\)2.12+1-4=-1
Mmin=-1 khi t=1 hay x=2
Ta có : D = (x - 1).(x + 3).(x + 2).(x + 6)
=> D = [(x - 1)(x + 6)].[(x + 3).(x + 2)]
=> D = (x2 + 5x - 6) . (x2 + 5x + 6)
=> D = (x2 + 5x)2 - 36
=> D = [x(x + 5)]2 - 36
Mà : [x(x + 5)]2 \(\ge0\forall x\)
Suy ra : D = [x(x + 5)]2 - 36 \(\ge-36\forall x\)
Vậy Dmin = -36 , dấu "=" xẩy ra khi và chỉ khi x = 0 hoặc -5
\(P=\frac{2}{3-\sqrt{4-x^2}}\)
Để P đạt GTNN khi và chỉ khi \(3-\sqrt{4-x^2}\) đạt GTLN
Vì \(\sqrt{4-x^2}\ge0\Rightarrow3-\sqrt{4-x^2}\le3\)
Dấu "=" xảy ra khi và chỉ khi \(\sqrt{4-x^2}=0\Leftrightarrow4-x^2=0\Leftrightarrow x^2=4\Leftrightarrow x=\left\{-2;2\right\}\)
Vậy \(P_{min}=\frac{2}{3}\Leftrightarrow x=\pm2\)
Ta có: D = \(\frac{x^2+15}{x^2+3}=\frac{x^2+3+12}{x^2+3}=1+\frac{12}{x^2+3}\)
Ta thấy : \(x^2+3\ge3\forall x\) => \(\frac{12}{x^2+3}\le4\forall x\) => \(1+\frac{12}{x^2+3}\le5\forall x\)
Dấu "=" xảy ra <=> x = 0
Vậy MaxD = 5 <=> x = 0