Cho tam giác ABC có BC=2.AB,M là trung điểm của BC,D là trung điểm của BM. Chứng minh rằng AC=2.AD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải :
Lấy K là trung điểm của AC
=> MK //AB; MK =AB/2
Xét tam giác ADB và tam giác CKM có:
AB = MC \(\left(=\frac{BC}{2}\right)\)
Góc ABD = góc CMK (đồng vị , MK//AB)
BD = MK \(\left(=\frac{AB}{2}\right)\)
=> tam giác ABD = tam giác CKM (c.g.c)
=> AD = CK mà AC = 2.CK
=>AC = 2.AD
a) Xét ΔAND và ΔCNB có
NA=NC(N là trung điểm của AC)
\(\widehat{AND}=\widehat{CNB}\)(hai góc đối đỉnh)
ND=NB(N là trung điểm của BD)
Do đó: ΔAND=ΔCNB(c-g-c)
b) Ta có: ΔAND=ΔCNB(cmt)
nên AD=BC(hai cạnh tương ứng)
Ta có: ΔAND=ΔCNB(cmt)
nên \(\widehat{ADN}=\widehat{CBN}\)(hai góc tương ứng)
mà \(\widehat{ADN}\) và \(\widehat{CBN}\) là hai góc ở vị trí so le trong
nên AD//BC(Dấu hiệu nhận biết hai đường thẳng song song)
\(\Delta DBA\) đồng dạng với \(\Delta ABC\) vì :
+) AB / BD = BC / AB = 2
+) \(\widehat{B}\) : chung kẹp giữa các cạnh tương ứng
\(\Rightarrow\)AC / AD = BC / BA= 2
\(\Rightarrow AC=2AD\)
Xet ΔABD và ΔCBA có
AB/CB=BD/BA
góc B chung
=>ΔABD đồng dạng vơi ΔCBA
vẽ hình đi mình giải cho