K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2017

a, △ABE=△ACD (g.c.g) vì AB=AC;A^ chung; ABE^=ACD^=4502
⇒BE=CD;AE=AD;AEB^=ADC^

b, △BDI=△CEI (g.c.g) vì BD=EC(=AB−AD);BDI^=IEC^(=1800−BEA^);ABE^=ACD^=4502
⇒ID=IE

△ADI=△AEI (c.g.c) vì AD=AE;ADC^=AEB^;ID=IE
⇒DAI^=EAI^=9002=450

△AMC có CAM^=MCA^=450⇒△AMC vuông cân tại M.

Chứng minh tương tự có △AMB vuông cân tại M.

c, Gọi F là giao điểm của BE và AK.

△BAF=△BKF (g.c.g) vì BFA^=BFK^=900;BF chung ABF^=KBF^=4502
⇒AB=BK

Chứng minh tương tự có ⇒BD=BH ⇒HK=AD(1)

△ABE=△KBE (c.g.c) vì AB=BK;ABE^=KBE^=4502;BE chung.
⇒AE=EK;BKE^=BAE^=900

⇒EK⊥BC hay △EKC vuông cân tại K⇒KC=KE=AE=AD(2)

Từ (1) và (2) ⇒HK=CK

16 tháng 12 2016

OC = OD

16 tháng 2 2017

Tính độ dài các cạnh góc vuông của một tam giác vuông cân có cạnh huyền bằng:

a) 2cm

b)\(\sqrt{2cm}\)

Cho nửa đường tròn tâm O đường kính AB. Trên cùng một nửa mặt phẳng bờ AB chứa nửa đường tròn (O), kẻ các tia tiếp tuyến Ax và By với nửa đường tròn đó. Gọi M là điểm bất kì trên nửa đường tròn (O) ( M khác A, M khác B ) và C là điểm nằm giữa A và B sao cho AC<CB. Đường thẳng vuông góc với MC tại M cắt tia Ax tại D; đường thẳng vuông góc với CD tại C...
Đọc tiếp

Cho nửa đường tròn tâm O đường kính AB. Trên cùng một nửa mặt phẳng bờ AB chứa nửa đường tròn (O), kẻ các tia tiếp tuyến Ax và By với nửa đường tròn đó. Gọi M là điểm bất kì trên nửa đường tròn (O) ( M khác A, M khác B ) và C là điểm nằm giữa A và B sao cho AC<CB. Đường thẳng vuông góc với MC tại M cắt tia Ax tại D; đường thẳng vuông góc với CD tại C cắt tia By tại E. Gọi P là giao điểm giữa AM và CD, Q là giao điểm BM và CE. Cm

a) Các tứ giác ACMD và CQMP là tứ giác nội tiếp

b) PQ // AB

c) Ba điểm D,M,E thẳng hàng

d) Giả sử MC là phân giác của góc AMB. Cmr đường thẳng AB và đường tròn (O) cùng tiếp xúc với đường tròn ngoại tiếp tứ giác CQMP

0
Cho nửa đường tròn tâm O đường kính AB. Trên cùng một nửa mặt phẳng bờ AB chứa nửa đường tròn (O), kẻ các tia tiếp tuyến Ax và By với nửa đường tròn đó. Gọi M là điểm bất kì trên nửa đường tròn (O) ( M khác A, M khác B ) và C là điểm nằm giữa A và B sao cho AC<CB. Đường thẳng vuông góc với MC tại M cắt tia Ax tại D; đường thẳng vuông góc với CD tại C...
Đọc tiếp

Cho nửa đường tròn tâm O đường kính AB. Trên cùng một nửa mặt phẳng bờ AB chứa nửa đường tròn (O), kẻ các tia tiếp tuyến Ax và By với nửa đường tròn đó. Gọi M là điểm bất kì trên nửa đường tròn (O) ( M khác A, M khác B ) và C là điểm nằm giữa A và B sao cho AC<CB. Đường thẳng vuông góc với MC tại M cắt tia Ax tại D; đường thẳng vuông góc với CD tại C cắt tia By tại E. Gọi P là giao điểm giữa AM và CD, Q là giao điểm BM và CE. Cm

a) Các tứ giác ACMD và CQMP là tứ giác nội tiếp

b) PQ // AB

c) Ba điểm D,M,E thẳng hàng

d) Giả sử MC là phân giác của góc AMB. Cmr đường thẳng AB và đường tròn (O) cùng tiếp xúc với đường tròn ngoại tiếp tứ giác CQMP

0
21 tháng 12 2017

giúp gấp

31 tháng 3 2016

bạn nhầm đề bài rồi!

xy vuông góc với OA thì đường thẳng qua B vuông góc với OC(hay xy) thì không thể cắt được

Sửa đề: C khác O và A

a: góc DAC+góc DMC=180 độ

=>DACM nội tiếp

b: góc DCE=góc DCM+góc ECM

=góc DAM+góc EBM

=90 độ

=>ΔDCE vuông tại C