Cho x>1/4 Tìm GTNN của biểu thức :
A= [2x- ( cănx)+8]/[2×(cănx)-1]
Các bạn giúp mình với mình đang cần gấp ♡♡♡♡
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
http://vndoc.com/7-bo-de-thi-hoc-sinh-gioi-tinh-toan-lop-8/download
tk em nha !!! ^ ^
Nguyễn Thị Hương Trà nè !
Mình có tìm thử thì có đề của năm 2013 bạn có thể tham khảo
Tại đây : http://nslide.com/download/de-thi-de-toan-hsg8-pt0jzq
\(H=\left|x-3\right|+\left|4+x\right|\)
\(H=\left|3-x\right|+\left|4+x\right|\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)ta có :
\(H\ge\left|3-x+4+x\right|=\left|7\right|=7\)
Dấu "=" xảy ra khi ( có 2 trường hợp )
TH1: \(\hept{\begin{cases}3-x>0\\4+x>0\end{cases}\Rightarrow\hept{\begin{cases}x< 3\\x>-3\end{cases}\Rightarrow}-3< x< 3\left(Chon\right)}\)
TH2: \(\hept{\begin{cases}3-x< 0\\4+x< 0\end{cases}\Rightarrow\hept{\begin{cases}x>3\\x< -4\end{cases}\Rightarrow}3< x< -4\left(Loai\right)}\)
Vậy Hmin = 7 khi và chỉ khi -3 < x < 3
Ta có:
\(\hept{\begin{cases}\left|x-3\right|=\left|3-x\right|\ge3-x\\\left|4+x\right|\ge4+x\end{cases}\forall x}\)
\(H=\left|x-3\right|+\left|4+x\right|\)
\(\Rightarrow H=\left|3-x\right|+\left|4+x\right|\)
\(\Rightarrow H\ge3-x+4+x=7\)
\(H=7\Leftrightarrow\hept{\begin{cases}\left|3-x\right|=3-x\\\left|4+x\right|=4+x\end{cases}\Leftrightarrow}\hept{\begin{cases}3-x\ge0\\4+x\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\le3\\x\ge-4\end{cases}\Leftrightarrow-4\le x\le3}\)
Vậy \(H_{min}=7\Leftrightarrow-4\le x\le3\)
Độ dài quãng đường cần sửa là
125 : 5 x 9 = 225 ( m )
Đáp số 225 m
- B1: Đưa trỏ chuột vào vị trí cần chèn hình ảnh.
B2: Chọn Insert -> Picture -> FromFile.
Xuất hiện hộp thoại Insert Picture.
B3: Nháy chọn hình ảnh cần chèn.
B4: Nháy nút Insert để chèn
a: \(=12x^2-9x-12x^2-10x+6x+5=-13x+5\)
b: \(=3x\left(x^2-2x+1\right)-2x\left(x^2-9\right)+4x^2-16x\)
\(=3x^3-6x^2+3x-2x^3+18x+4x^2-16x\)
\(=x^3-2x^2+3x\)
c: \(=x^3-3x^2+3x-1+x^3+8+3\left(x^2-16\right)\)
\(=2x^3-3x^2+3x+7+3x^2-48=2x^3+3x-41\)
d: \(=\left(x^3+1\right)\left(x^3-1\right)=x^6-1\)
\(\left(x+2\right)^3-x.\left(x+2\right).\left(x-2\right)+6x^2\)
\(=x^3+3x^2.2+3x.2^2+2^3-x.\left(x^2-2^2\right)+6x^2\)
\(=x^3+6x^2+12x+8-\left(x^2-4\right)+6x^2\)
\(=x^3+6x^2+12x+8-x^3+4x+6x^2\)
\(=\left(x^3-x^3\right)+\left(6x^2+6x^2\right)+\left(12x+4x\right)+8\)
\(=12x^2+16x+8\)
\(A=\frac{2x-\sqrt{x}+8}{2\sqrt{x}-1}=\frac{\sqrt{x}\left(2\sqrt{x}-1\right)+8}{2\sqrt{x}-1}\)
\(=\frac{\sqrt{x}\left(2\sqrt{x}-1\right)}{2\sqrt{x}-1}+\frac{8}{2\sqrt{x}-1}=\sqrt{x}+\frac{8}{2\sqrt{x}-1}\)
Áp dụng BĐT Cô Si cho 2 số dương \(\sqrt{x}\)và \(\frac{8}{2\sqrt{x}-1}\)ta có :
\(\sqrt{x}+\frac{8}{2\sqrt{x}-1}\ge2\sqrt{\sqrt{x}.\frac{8}{2\sqrt{x}-1}}\)
\(\Rightarrow A_{min}\)\(\Leftrightarrow2\sqrt{\sqrt{x}.\frac{8}{2\sqrt{x}-1}}\)nhỏ nhất \(\Rightarrow x=0\)
Vậy \(A=0\)\(\Leftrightarrow\sqrt{x}=\frac{8}{2\sqrt{x}-1}\)( tự tính nha )
Phạm Thị Thùy Linh đây nhé
\(A=\frac{2x-\sqrt{x}+8}{2\sqrt{x}-1}=\frac{1}{2}\left(2\sqrt{x}-1+\frac{16}{2\sqrt{x}-1}\right)+\frac{1}{2}\ge\frac{9}{2}\)
Dấu "=" xảy ra khi \(x=\frac{25}{4}\)