\(ChoA=\left(\frac{x^3+1}{x^2-1}-\frac{x^2-1}{x-1}\right):\left(x+\frac{x}{x-1}\right)\)
a)tìm ĐKXĐ
b)Rút gọn A
c) tìm x để A=3
d)tìm x nguyên để A nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\left(\frac{x^3+1}{x^2-1}-\frac{x^2-1}{x-1}\right):\left(x+\frac{x}{x-1}\right)\)
\(=\left(\frac{x^3+1}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}\right):\left(\frac{x\left(x-1\right)}{x-1}+\frac{x}{x-1}\right)\)
\(=\left(\frac{\left(x+1\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}\right):\left(\frac{x\left(x-1\right)+x}{x-1}\right)\)
\(=\left(\frac{\left(x+1\right)\left[x^2-x+1-x^2+1\right]}{\left(x-1\right)\left(x+1\right)}\right):\left(\frac{x^2}{x-1}\right)\)
\(=\frac{\left(x+1\right)\left(2-x\right)}{\left(x-1\right)\left(x+1\right)}.\frac{x-1}{x^2}=\frac{2-x}{x^2}\)
b, Ta có : A = 3 hay \(\frac{2-x}{x^2}=3\)
\(3x^2=2-x\Leftrightarrow3x^2+x-2=0\)
\(\Leftrightarrow3x^2+3x-2x-2=0\Leftrightarrow\left(x+1\right)\left(3x-2\right)=0\Leftrightarrow x=-1;\frac{2}{3}\)
a,\(A=\left(\frac{x^3+1}{x^2-1}-\frac{x^2-1}{x-1}\right)\div\left(x+\frac{x}{x-1}\right)\)
\(=\left(\frac{x^3+1}{\left(x+1\right)\left(x-1\right)}-\frac{\left(x^2-1\right)\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}\right)\div\left(\frac{x\left(x-1\right)}{x-1}+\frac{x}{x-1}\right)\)
\(=\left(\frac{\left(x+1\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}\right)\div\left(\frac{x\left(x-1\right)+x}{\left(x-1\right)}\right)\)
\(=\left(\frac{\left(x+1\right)\left(x^2-x+1-x^2+1\right)}{\left(x-1\right)\left(x+1\right)}\right)\div\left(\frac{x^2}{x-1}\right)\)
\(=\left(\frac{\left(x+1\right)\left(2-x\right)}{\left(x-1\right)\left(x+1\right)}\right)\div\frac{x^2}{x-1}\)
\(=\frac{\left(x+1\right)\left(2-x\right)}{\left(x-1\right)\left(x+1\right)}\times\frac{x-1}{x^2}\)
\(=\frac{\left(x+1\right)\left(2-x\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)x^2}=\frac{2-x}{x^2}\)
\(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{8}{x^2-1}\right):\left(\frac{1}{x-1}-\frac{7x+3}{1-x^2}\right)\)
\(A=\left[\frac{x^2+2x+1}{\left(x-1\right)\left(x+1\right)}-\frac{x^2-2x+1}{\left(x+1\right)\left(x-1\right)}+\frac{8}{\left(x+1\right)\left(x-1\right)}\right]:\left[\frac{x+1}{\left(x+1\right)\left(x-1\right)}-\frac{3-7x}{\left(x+1\right)\left(x-1\right)}\right]\)
\(A=\left[\frac{x^2+2x+1-x^2+2x-1+8}{\left(x+1\right)\left(x-1\right)}\right]:\frac{x+1-3+7x}{\left(x+1\right)\left(x-1\right)}\)
\(A=\frac{4x+8}{\left(x+1\right)\left(x-1\right)}.\frac{\left(x+1\right)\left(x-1\right)}{8x-2}\)
......................
\(A=\left(\frac{1}{1-x}-1\right):\left(x+1-\frac{1-2x}{1-x}\right)\) \(\left(ĐK:x\ne1;x\ne2\right)\)
\(=\frac{1-1+x}{1-x}:\frac{\left(1-x\right)\left(x+1\right)-\left(1-2x\right)}{1-x}\)
\(=\frac{x}{1-x}\cdot\frac{1-x}{1-x^2-1+2x}\)
\(=\frac{x}{-x^2+2x}\)
\(=\frac{x}{-x\left(x-2\right)}=-\frac{1}{x-2}=\frac{1}{2-x}\)
b) Để A=\(\frac{1}{2}\) \(\Leftrightarrow\)\(\frac{1}{2-x}=\frac{1}{2}\)
\(\Leftrightarrow2-x=2\)
\(\Leftrightarrow-x=0\Leftrightarrow x=0\)
c) Để A>1 \(\Leftrightarrow\)\(\frac{1}{2-x}>1\)
\(\Leftrightarrow\)\(\frac{1}{2-x}-1>0\)
\(\Leftrightarrow\)\(\frac{1-2+x}{2-x}>0\)
\(\Leftrightarrow\)\(\frac{x-1}{2-x}>0\)
\(\Leftrightarrow\begin{cases}x-1>0\\2-x>0\end{cases}\) hoặc \(\begin{cases}x-1< 0\\2-x< 0\end{cases}\)
\(\Leftrightarrow\begin{cases}x>1\\x< 2\end{cases}\) hoặc \(\begin{cases}x< 1\\x>2\end{cases}\)(vô nghiệm)
\(\Leftrightarrow1< x< 2\)
Vậy \(1< x< 2\) thì A<1