Cho ΔABC vuông tại A.Gọi M là trung điểm của BC. Trên tia đối của tia MA, lấy điểm E sao cho ME=MA a, Tính số đo ^ABC khi ^ACB=40o
b, Chứng minh: ΔAMB = ΔEMC và AB//EC
c, Từ C kẻ đường thẳng d //AE. Kẻ EK ⊥ d tại K. Chứng minh: ^KEC=^BCA
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn gõ thừa chữ "cân"
a/ Xét t/g ABC vuông tại A có
\(\widehat{ABC}+\widehat{ACB}=90^o\) (t/c)
\(\Rightarrow\widehat{ABC}=90^o-40^o=50^o\)
b/ Xét t/g AMB và t/g EMC có
AM = EM
\(\widehat{AMB}=\widehat{EMC}\) (đối đỉnh)MB = MC
=> t/g AMB = t/g EMC (c.g.c)c/ Có
AE // CK
=> \(\widehat{AEK}+\widehat{EKC}=180^o\) (tcp)
=> \(\widehat{AEK}=\widehat{AEC}+\widehat{CEK}=90^o\)
Xét t/g ABC vuông tại A có AM là đường trung tuyến
=> AM = 1/2 BC = BM
=> t/g AMB cân tại A
=> \(\widehat{ABC}=\widehat{BAM}\)
Mà \(\widehat{BAM}=\widehat{CEA}\)
=> \(\widehat{CBA}+\widehat{CEK}=90^o\)
=> \(\widehat{CEK}=\widehat{ACB}\)
Câu hỏi của le thu giang - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo bài làm tương tự ở link trên.
Hướng dẫn:
a) Có: \(\Delta\)ABC vuông tại A và ^ACB = 40\(^o\)
=> ^ABC = 90\(^o\)- 40\(^o\)=50\(^o\)
b ) Xét \(\Delta\)AMB và \(\Delta\)EMC có: AM = ME ; BM = MC ( gt ) ; ^AMB = ^EMC ( đối đỉnh )
=> \(\Delta\)AMB = \(\Delta\)EMC
=> ^ABM = ^ECM => ^ABC = ^BCE => AB //EC
c) \(\Delta\)ABC vuông tại A có AM là trung tuyến
=> AM = BM= CM =ME
=> \(\Delta\)MEC cân tại M => ^MEC =^ MCE mà ^MEC = ^ECK ( so le trong ) và ^KEC + ^ECK = 90\(^o\)
=> ^^MCE + ^KEC = 90\(^o\)
Ta lại có: AB //EC => ^ECA = 90 \(^o\)=> ^BCA +^ BCE = 90\(^o\)=> ^BCA + ^MCE = 90\(^o\)
=> ^BCA = ^KEC
Sao câu B ko có chứng minh AB//EC?