Cho tam giác ABC có góc BAC = 90o. Tia phân giác của góc B cắt AC tại E. Trên BC lấy điểm F sao cho BF = AB, gọi giao điểm của đường thẳng FE và đường thẳng BA là K. Chứng minh rằng:
a) AE = EF và EFB = 90o
b) EK = EC
c) BE vuông góc AF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(hình bạn tự vẽ)
Từ B kẻ đường thẳng vuông góc vs FE cắt FE tại N, từ E kẻ đường thẳng vuông góc vs BC cắt BC tại K.
TA XÉT T/G ADB VÀ T/G ADE CÓ: AE=AB (GT)
GÓC BAD= GÓC DAE (VÌ AD P/G GOSB BAC)
AD CHUNG
=> T/G ADB = T/G ADE (C-G-C)
=> GÓC ABD=GÓC AEC (2 GÓC TƯƠNG ỨNG) (1)
=> DB=DE (2 CẠNH TƯƠNG ỨNG)
XÉT T/G BND VÀ T/G EKD CÓ: GÓC BND=GÓC DKE (CÙNG = 90 ĐỘ)
BD=DE (CMT)
GÓC BDN=GÓC EDK (ĐỐI ĐỈNH)
=>GÓC NBD=GÓC DEK (2 GÓC TƯƠNG ỨNG) (2)
=> NB=EK (2 CẠNH TƯƠNG ỨNG)
TỪ (1) VÀ (2) => GÓC ABD+ GÓC DBN = GÓC AEC + GÓC DEK
=> GÓC ABN= GÓC AEK
MÀ GÓC FBN KỀ BÙ GÓC ABN
GÓC KEC KỀ BÙ GÓC AEK
=>GÓC FBN= GÓC KEC
XÉT T/G FBN VÀ T/G CEK CÓ: GÓC FBN= GÓC KEC (CMT)
BN=EK (CMT)
GÓC BNF= GÓC EKC (CÙNG = 90 ĐỘ)
=> T/G FBN=T/G CEK (G-C-G)
=> BF=CE (2 CẠNH TƯỜNG ỨNG)
MÀ AB=AE (GT)
=> BF+ AB= CE+ AE
=> AF=AC
=> T/G AFC CÂN TẠI A
MÀ T/G AEB CÂN TẠI A ( GT)
=> BE// CF (T/C)
=> ĐPCM
Bài 3:
a: Xét ΔABM và ΔACN có
AB=AC
góc ABM=góc ACN
BM=CN
Do đó: ΔABM=ΔACN
Suy ra: AM=AN
b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc BAH=góc CAK
Do đó; ΔAHB=ΔAKC
Suy ra: AH=AK và BH=CK
c: Xét ΔHBM vuông tại H và ΔKCN vuông tại K có
MB=CN
góc M=góc N
Do đó ΔHBM=ΔKCN
Suy ra: góc HBM=góc KCN
=>góc OBC=góc OCB
hay ΔOBC can tại O
Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
=> BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE.
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
=>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
(Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/
(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
=> ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).
mình hỏi : Một mảnh đất hình chữ nhật có nửa chu vi là 84m chiều rộng bằng 3/5 chiều dài.
a) tính diện tích mảnh vườn đó.
b) người ta dùng 30% diện tích để trồng hoa. hỏi diện tích vườn hoa là bao nhiêu.
4:
a: Xet ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
góc EAM=góc FAM
=>ΔAEM=ΔAFM
=>AE=AF
c: AE=AF
ME=MF
=>AM là trung trực của EF
mà K nằm trên trung trực của EF
nên A,M,K thẳng hàng