K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2021

Qua D kẻ đường thẳng song song với AB cắt AC tại E.

Dễ thấy tam giác AED vuông cân tại E nên \(\dfrac{AD}{\sqrt{2}}=AE=ED\).

Theo định lý Thales ta có: \(\dfrac{DE}{AB}=\dfrac{CE}{CA}=1-\dfrac{AE}{CA}=1-\dfrac{DE}{CA}\Rightarrow\dfrac{1}{DE}=\dfrac{1}{AB}+\dfrac{1}{AC}\Rightarrow\dfrac{\sqrt{2}}{AD}=\dfrac{1}{AB}+\dfrac{1}{AC}\).

Vậy ta có đpcm.

12 tháng 3 2021

Bài này mình làm rồi mà bạn

19 tháng 10 2021

Bạn tk câu này mình làm rồi:

Cho ΔABC nhọn, đường cao AH. Gọi D, E lần lượt là hình chiếu của H trên AB, AC.CMR:a) DE=AH.SinAb) Cho AI là phân giác g... - Hoc24

nhớ đổi điểm I thành điểm D

23 tháng 6 2021

Kẻ \(AH\perp BC\) tại H

Áp dụng hệ thức lượng trong tam giác vuông BAC có:
\(\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{AH^2}\)

Do AD và AE lần lượt là hai tia phân giác trong và ngoài tại đỉnh A

\(\Rightarrow AD\perp AE\)

Áp dụng hệ thức lượng vào tam giác vuông AED có:

\(\dfrac{1}{AE^2}+\dfrac{1}{AD^2}=\dfrac{1}{AH^2}\) (AH là đường cao của tam giác AED do \(AH\perp BC\) hay \(AH\perp ED\))

\(\Rightarrow\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{AE^2}+\dfrac{1}{DA^2}\)

Vậy...