K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: BC=5cm

AH=2,4cm

b: Xét (A) có 

CE là tiếp tuyến

CH là tiếp tuyến

Do đó: AC là tia phân giác của góc EAH(1)

Xét (A) có 

BH là tiếp tuyến

BD là tiếp tuyến

Do đó: AB là tia phân giác của góc HAD(2)

Từ (1) và (2) suy ra E,A,D thẳng hàng

3 tháng 1 2022

Tính AH ntn bạn ?

22 tháng 12 2021

b: DE=4cm

23 tháng 3 2021

A B C H D E I

a/ Xét \(\Delta ABC\) có

\(\widehat{ABC}+\widehat{ACB}=90^o\) (1)

Ta có

\(\widehat{ABD}=\widehat{ABC}\) (Hai tiếp tuyến cùng xp từ 1 điểm thì đường nối điểm đó với tâm đường tròn là phân giác của góc tạo bởi 2 tiếp tuyến) (2)

Ta có 

\(\widehat{ACE}=\widehat{ACB}\)  (Hai tiếp tuyến cùng xp từ 1 điểm thì đường nối điểm đó với tâm đường tròn là phân giác của góc tạo bởi 2 tiếp tuyến) (3)

Từ (1) (2) (3) \(\Rightarrow\widehat{ABD}+\widehat{ACE}=90^o\)

\(\Rightarrow\widehat{ABD}+\widehat{ACE}+\widehat{ABC}+\widehat{ACB}=180^o\)

\(\Rightarrow\left(\widehat{ABD}+\widehat{ABC}\right)+\left(\widehat{ACE}+\widehat{ACB}\right)=\widehat{DBC}+\widehat{ECB}=180^o\) 

=> BD//CE (hai đường thẳng bị cắt bởi đường thẳng thứ 3 có hai góc trong cùng phía bù nhau thì chúng // với nhau)

Ta có 

\(AD\perp BD\Rightarrow AD\perp CE\)

\(AE\perp CE\Rightarrow AE\perp BD\)

=> AD và AE cùng vuông góc với BD => AD và AE trùng nhau (Từ 1 điểm ở ngoài 1 đường thẳng chỉ dựng được duy nhất 1 đường thẳng vuông góc với đường thẳng đã cho) => D; A; E thẳng hàng

b/

Ta có \(\Delta ABC\) vuông tại A => A thuộc đường tròn đường kính BC. Gọi I là trung điểm BC nối AI ta có

BD//CE => BDEC là hình thang

AD=AE (bán kính (O))

IB=IC

=> AI là đường trung bình của hình thang BDEC => AI//CE mà \(CE\perp DE\Rightarrow AI\perp DE\) => DE là tiếp tuyến của đường tròn đường kính BC hay DE tiếp xúc với đường tròn đường kính BC

22 tháng 8 2021

a) Theo tính chất của hai của hai tiếp tuyến cắt nhau, ta có:
^DAB=^BAH^HAC=^CAE.
Suy ra: ^DAE=^DAB+^BAH+^HAC+^CAE=2^BAH+2^HAC=2^BAC=180o.
Do ^DAE=180o nên DE là đường kính, suy ra D, E, A thẳng hàng.
b) Theo câu a:  DE là đường kính đường tròn tâm A.
Có BDDE,CEDE. Suy ra BD//CE.

Gọi O là trung điểm BC.
Vậy tứ giác BDEC là hình thang. Do O và A lần lượt là trung điểm của BC, DE nên OA là đường trung bình của hình thang BDEC.
Suy ra OADE mà OA=BC2  nên OA là bán kính của đường tròn đường kính BC.

Thế thì DE tiếp xúc với đường tròn đường kính BC.

1) Ta có: \(BC^2=5^2=25\)

\(AB^2+AC^2=3^2+4^2=25\)

Do đó: \(BC^2=AB^2+AC^2\)(=25)

Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)

nên ΔABC vuông tại A(Định lí Pytago đảo)

Xét ΔABC vuông tại A có 

\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{4}{5}\)

2) 

a) Xét (A) có 

H∈(A)

BH⊥AH tại H(gt)

Do đó: BH là tiếp tuyến của (A)(Dấu hiệu nhận biết tiếp tuyến của đường tròn)

Xét (A) có 

H∈(A)

CH⊥AH tại H(gt)

Do đó: CH là tiếp tuyến của (A)(Dấu hiệu nhận biết tiếp tuyến đường tròn)

Xét (A) có 

CH là tiếp tuyến có H là tiếp điểm(cmt)

CE là tiếp tuyến có E là tiếp điểm(gt)

Do đó: AC là tia phân giác của \(\widehat{EAH}\)(Tính chất hai tiếp tuyến cắt nhau)

\(\widehat{EAH}=2\cdot\widehat{HAC}\)

Xét (A) có 

BH là tiếp tuyến có H là tiếp điểm(gt)

BD là tiếp tuyến có D là tiếp điểm(gt)

Do đó: AB là tia phân giác của \(\widehat{HAD}\)(Tính chất hai tiếp tuyến cắt nhau)

\(\widehat{HAD}=2\cdot\widehat{BAH}\)

Ta có: \(\widehat{EAH}+\widehat{HAD}=\widehat{EAD}\)(Tia AH nằm giữa hai tia AE,AD)

\(\Leftrightarrow2\cdot\widehat{BAH}+2\cdot\widehat{CAH}=\widehat{EAD}\)

\(\Leftrightarrow\widehat{EAD}=2\cdot\left(\widehat{BAH}+\widehat{CAH}\right)\)

\(\Leftrightarrow\widehat{EAD}=2\cdot90^0=180^0\)

hay E,A,D thẳng hàng(đpcm)