K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

đặt ab + 4 = m2 (m là số tự nhiên)

=> a.b = m2 - 4 = (m - 2) . (m + 2) =  => b = (m - 2) . (m + 2) / a

chọn m = a + 2 => m - 2 = a

=> b = a.(a+4)/a = a + 4

vậy với mọi số tự nhiên a luôn  tồn tại số tự nhiên b = a + 4 để ab + 4 là số chihs phương

t i c k nhé!! 565756876879780

t i c k mk nha bn!!

8768789879080

11 tháng 4 2016

a=51;b=34

23 tháng 4 2017

Giải:

Theo đề bài ta có:

\(8b-9a=31\Rightarrow b=\dfrac{31+9a}{8}\)

\(=\dfrac{32-1+8a+a}{8}=\left[\left(4+a\right)+\dfrac{a-1}{8}\right]\) \(\in N\)

\(\Rightarrow\dfrac{a-1}{8}\in N\Leftrightarrow\left(a-1\right)⋮8\Rightarrow a=8k+1\left(k\in N\right)\)

Khi đó: \(b=\dfrac{31+9\left(8k+1\right)}{8}=9k+5\)

\(\Rightarrow\dfrac{11}{17}< \dfrac{8k+1}{9k+5}< \dfrac{23}{29}\)

\(\Rightarrow11\left(9k+5\right)< 17\left(8k+1\right)\Rightarrow37k>38\) \(\Rightarrow k>1\left(1\right)\)

\(29\left(8k+1\right)< 23\left(9k+5\right)\Rightarrow25k< 86\) \(\Rightarrow k< 4\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\Rightarrow1< k< 4\Leftrightarrow k\in\left\{2;3\right\}\)

Ta xét 2 trường hợp:

Trường hợp 1: Nếu \(k=2\)

\(\Rightarrow\left\{{}\begin{matrix}a=8k+1\\b=9k+5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=8.2+1\\b=9.2+5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=17\\b=23\end{matrix}\right.\)

Trường hợp 2: Nếu \(k=3\)

\(\Rightarrow\left\{{}\begin{matrix}a=8k+1\\b=9k+5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=8.3+1\\b=9.3+5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=25\\b=32\end{matrix}\right.\)

Vậy \(\left(a,b\right)=\left(17;23\right);\left(25;32\right)\)