Tìm tất cả các số chính phương có bốn chữ số và chia hết cho 33.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\overline{abcd}=m^2\left(m\inℕ^∗\right)\)
Ta có: \(m^2⋮33\Rightarrow m^2⋮3;11\)
\(\Rightarrow m^2⋮9;121\)
Vì (9;121) =1 nên m2 chia hết cho 9.121
=> m2 chia hết cho 1089
=> m2= 1089k2 \(\left(k\inℕ^∗\right)\)
Vì \(1000\le m^2\le9999\Rightarrow1000\le1089k^2\le9999\)
\(\Rightarrow1\le k^2\le9\Rightarrow k^2\in\left\{1;4;9\right\}\)\(\Rightarrow m^2\in\left\{1089;4356;9801\right\}\)
Vậy...
Gọi số cần tìm X => 1000<X<9999, đặt X= 147*A =>A không nhỏ hơn 8 và bé hơn hoặc bằng 67, tận cùng của X là 9 nên tận cùng của A phải là 7 như vậy A chỉ có thể 17,27,37,47,57,67 , mặt khác 147=3*7*7 suy ra A=3*k^2 ( k số twj nhiên), theo trên chỉ có hai số 27 và 57 chia hết 3 nên A chỉ có thể là 27, hoặc 57, thấy rằng chỉ có A= 27 thỏa màn, vậy X= 147*24 = 3969 = 63^2.
a)Để a32b chia hết cho 5 và 2 thì b=0
Thay b=0
ta có a32b=a320
Để a320 chia hết cho 3 thì (a+3+2+0) chia hết cho 3 hay a +5 chia hết cho 3
Vậy a=4 hoặc 7
Vậy a32b =4320 hoặc 7320
câu b)tương tự
1089
4356
9801