Cho \(\Delta ABC\)cân tại A và \(\widehat{BAC}=36^o\). Chứng minh rằng \(\frac{BA}{BC}\)là số vô tỉ.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ đường cao AH của tam giác ABC. Do tam giác ABC cân tại A nên H là trung điểm BC và AH cũng là phân giác góc A.
Vậy thì ta có: \(HC=\frac{b}{2};\widehat{HAC}=18^o\)
Khi đó ta có: \(HC=AC.\sin18^o\Rightarrow\frac{b}{2}=a.\sin18^o\)
\(\Rightarrow b=2a.\sin18^o\)
Vậy thì \(b^2+ab-a^2=4a^2\sin^218^o+2b^2\sin18^o-a^2\)
\(=a^2\left(4\sin^218^o+2\sin18^o-1\right)=0\)
a, vì CE//AD nên \(\widehat{ECA}\)=\(\widehat{DAB}\)mà \(\widehat{DAB}\)=90 độ -45 độ=45 độ
=> \(\widehat{ECA}\)=45 độ
trong tam giác EAC có: \(\widehat{EAC}\)=90 độ; \(\widehat{ECA}\)=45 độ(1)
=> \(\widehat{AEC}\)=45 độ(2)
từ (1) và (2) suy ra tam giác AEC cân tại A
b, tam giác AEC cân tại A mà có góc A vuông nên tam giác AEC vuông cân
=> EC là cạnh huyền của tam giác vuông AEC nên EC là cạnh lớn nhất(cạnh huyền lớn hơn cạnh góc vuông)
=>