Cho đường tròn tâm O đường kính AB. Trên đường tròn lấy điểm C (BC<AC). Vẽ đường thẳng qua O song song với BC cắt tiếp tuyến tại A ở M.
a) Chứng minh các tam giác ABC và AMO là các tam giác vuông
b) Chứng minh MC là tiếp tuyến của đường tròn (O)
c) Tiếp tuyến tại B của đường tròn (O) cắt tia AC tại N. Chứng minh \(ON\perp MB\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. BD^2- DK^2 = BA^2 - AK^2 = 4R^2 - R^2 / 4
2.Gọi N là trung điểm AM
=> ON là đường trung bình trong tam giác ABM
=> ON // BM và ON = 1/2*BM
BM cắt OC tại L ,ta có M là trung điểm NC và ML // ON
=> ML là đường trung bình của tam giác CON
=> L là trung điểm OC
a) Vì TO là đường kính \(\Rightarrow\angle TMO=90\) mà \(M\in\left(O\right)\Rightarrow TM\) là tiếp tuyến của (O)
b) Xét \(\Delta TMC\) và \(\Delta TDM:\) Ta có: \(\left\{{}\begin{matrix}\angle MTDchung\\\angle TMC=\angle TDM\end{matrix}\right.\)
\(\Rightarrow\Delta TMD\sim\Delta TCM\left(g-g\right)\Rightarrow\dfrac{TC}{TM}=\dfrac{TM}{TD}\Rightarrow TC.TD=TM^2\)
c) Vì đường tròn đường kính TO có tâm I và đường tròn (O) cắt nhau tại M và N \(\Rightarrow\) IO là trung trực của MN \(\Rightarrow MN\bot TO\)
mà \(\Delta TMO\) vuông tại M \(\Rightarrow TM^2=TE.TO\) (hệ thức lượng)
mà \(TC.TD=TM^2\Rightarrow TC.TD=TE.TO\Rightarrow\dfrac{TC}{TE}=\dfrac{TO}{TD}\)
Xét \(\Delta TEC\) và \(\Delta TDO:\) Ta có: \(\left\{{}\begin{matrix}\angle OTDchung\\\dfrac{TC}{TE}=\dfrac{TO}{TD}\end{matrix}\right.\)
\(\Rightarrow\Delta TEC\sim\Delta TDO\left(c-g-c\right)\Rightarrow\angle TEC=\angle TDO\Rightarrow ODCE\) nội tiếp