K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét phương trình hoành độ ta có :\(mx^2-2x+m^2=0\)

\(\Delta=b^2-4ac=4-4m^3\)

Để phương trình có nghiệm thì \(\Delta\ge0\)hay \(4-4m^3\ge0\)

\(4\ge4m^3\)

\(1\ge m^3\)

\(1\ge m\)

Theo Vi-ét ta có \(\hept{\begin{cases}xA+xB=\frac{-b}{a}=\frac{2}{m}\\xAxB=\frac{c}{a}=m\end{cases}}\)

Vì m >0 nên \(xAxB>0\)

Vậy phương trình có hai nghiệm cùng dấu nên A B nằm cùng 1 phía trục tung

Ta có :\(\frac{2}{xA+xB}+\frac{1}{4xAxB+1}\)

\(\frac{2}{\frac{2}{m}}\)\(+\frac{1}{4m+1}\)\(m+\frac{1}{4m+1}=\frac{m\left(4m+1\right)}{4m+1}+\frac{1}{4m+1}\)=\(\frac{4m^2+m+1}{4m+1}=P\)

\(4m^2+m+1=P\left(4m+1\right)\)

\(4m^2+m+1=4mP+P\)

\(4m^2+m+1-4mP-P=0\)

\(4m^2+m-4mP+1-P=0\)

\(4m^2+m\left(1-4P\right)+1-P=0\)

\(\Delta=b^2-4ac=\left(1-4P\right)^2-16\left(1-P\right)\)

\(=1-8P+16P^2-16+16P\)

\(=-15+8P+16P^2\)

Để phương trình có nghiệm thì \(\Delta\ge0\)hay \(16P^2+8P-15\ge0\)

\(\orbr{\begin{cases}P\le\frac{-5}{4}\\P\ge\frac{3}{4}\end{cases}}\)

Vậy minP =\(\frac{3}{4}\)

Dấu = xảy ra \(< =>\)\(\frac{4m^2+m+1}{4m+1}=P\)

\(\frac{4m^2+m+1}{4m+1}=\frac{3}{4}\)

\(4\left(4m^2+m+1\right)=3\left(4m+1\right)\)

\(16m^2+4m+4-12m-3=0\)

\(16m^2-8m+1=0\)

\(m=\frac{1}{4}\)

Vậy minP=\(\frac{3}{4}\)khi và chỉ khi \(m=\frac{1}{4}\)

5 tháng 6 2023

b) Phương trình hoành độ giao điểm của (P) và (d):

x² = mx - m + 1

⇔ x² - mx + m - 1 = 0

∆ = m² - 4.1.(m - 1)

= m² - 4m + 4

= (m - 2)² ≥ 0 với mọi m ∈ R

⇒ Phương trình luôn có hai nghiệm

Theo Viét ta có:

x₁ + x₂ = m (1)

x₁x₂ = m - 1 (2)

Lại có x₁ + 3x₂ = 7  (3)

Từ (1) ⇒ x₁ = m - x₂ (4)

Thay x₁ = m - x₂ vào (3) ta được:

m - x₂ + 3x₂ = 7

2x₂ = 7 - m

x₂ = (7 - m)/2

Thay x₂ = (7 - m)/2 vào (4) ta được:

x₁ = m - (7 - m)/2

= (2m - 7 + m)/2

= (3m - 7)/2

Thay x₁ = (3m - 7)/2 và x₂ = (7 - m)/2 vào (2) ta được:

[(3m - 7)/2] . [(7 - m)/2] = m - 1

⇔ 21m - 3m² - 49 + 7m = 4m - 4

⇔ 3m² - 28m + 49 + 4m - 4 = 0

⇔ 3m² - 24m + 45 = 0

∆' = 144 - 3.45 = 9 > 0

Phương trình có hai nghiệm phân biệt:

m₁ = (12 + 3)/3 = 5

m₂ = (12 - 3)/3 = 3

Vậy m = 3; m = 5 thì (P) và (d) cắt nhau tại hai điểm có hoành độ thỏa mãn x₁ + 3x₂ = 7

 

a: Thay x=0 và y=2 vào (d), ta được:

1-m=2

=>m=-1

25 tháng 9 2017

b) (d) cắt (P) tại 2 điểm A, B phân biệt nằm về 2 phía của trục tung khi và chỉ khi

Đề kiểm tra Toán 9 | Đề thi Toán 9

Khi đó 2 nghiệm của phương trình là:

Đề kiểm tra Toán 9 | Đề thi Toán 9
Đề kiểm tra Toán 9 | Đề thi Toán 9

Kẻ BB' ⊥ OM ; AA' ⊥ OM

Đề kiểm tra Toán 9 | Đề thi Toán 9

Ta có:

S A O M  = 1/2 AA'.OM ; S B O M  = 1/2 BB'.OM

Theo bài ra:

Đề kiểm tra Toán 9 | Đề thi Toán 9

Do m > 0 nên m = 8

Vậy với m = 8 thì thỏa mãn điều kiện đề bài.

17 tháng 5 2021

đơn giản vl

16 tháng 12 2017

Đáp án C

23 tháng 2 2019

a, Biến đổi hệ phương trình ban đầu ta được hệ  x - y = 0 3 x + 3 y = 12

Từ đó tìm được x = 2, y = 2

b, Phương trình hoành độ giao điểm của d và (p):

x 2 - 2 x - m 2 + 2 m = 0 (1)

d cắt (P) tại hai điểm phân biệt nằm về hai phía của trục tung Oy <=> (1) có hai nghiệm trái dấu. Từ đó tìm được 

Kết luận 

a: Thay x=1 và y=3 vào (d), ta được:

m+3-m=3

=>3=3(luôn đúng)

b: PTHĐGĐ là:

x^2-mx-3+m=0

=>x^2-mx+m-3=0

Để (d) cắt (P) tại hai điểm phân biệt thì m-3<0

=>m<3

23 tháng 5 2018

Đáp án B