Làm giúp em bài 2 4 5 ạ:(
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a. $[25+(-15)]+(-25)=25-15-25=(25-25)-15=0-15=-15$
b. $512-(-88)-400-112$
$=512+88-400-112$
$=(512-112-400)+88=(400-400)+88=88$
c.
$-(310)+(-290)-907+107=-310-290-907+107$
$=-(310+290)-(907-107)=-600-600=-1200$
d.
$-2004-1975+2000-2025$
$=-(2004-2000)-(1975+2025)=-4-4000=-(4+4000)=-4004$
Bài 1:
a. $ax+ay+bx+by=(ax+ay)+(bx+by)=a(x+y)+b(x+y)$
$=(x+y)(a+b)=17(-2)=-34$
b. $ax-ay+bx-by = (ax-ay)+(bx-by)$
$=a(x-y)+b(x-y)=(x-y)(a+b)=(-1)(-7)=7$
7 / 4 - 5/8 = 14 / 8 - 5 / 8 = 9/8
9 / 1 . 3 / 11 = 27 / 11
1/2 . 5 / 2 = 5 / 4
\(\dfrac{7}{4}-\dfrac{5}{8}=\dfrac{14}{8}-\dfrac{5}{8}=\dfrac{9}{8}\)
\(9\times\dfrac{3}{11}=\dfrac{9\times3}{11}=\dfrac{27}{11}\)
\(\dfrac{1}{2}:\dfrac{2}{5}=\dfrac{1}{2}\times\dfrac{5}{2}=\dfrac{5}{4}\)
Bài 3.
a. Ta có: \(CK=BK\left(gt\right)\Rightarrow OK\perp BC\)
Ta có: \(\widehat{OIC}=90^o\)
\(\widehat{OKC}=90^o\)
\(\Rightarrow\widehat{OIC}+\widehat{OKC}=90^o+90^o=180^o\)
`=>` Tứ giác CIOK nội tiếp đường tròn
b. Xét \(\Delta AID\) và \(\Delta CIB\), có:
\(\widehat{AID}=\widehat{CIB}=90^o\left(gt\right)\)
\(\widehat{ADI}=\widehat{CBI}\) ( cùng chắn \(\stackrel\frown{AC}\) )
Vậy \(\Delta AID\sim\Delta CIB\) ( g.g)
\(\Rightarrow\dfrac{IA}{IC}=\dfrac{ID}{IB}\)
\(\Leftrightarrow IC.ID=IA.IB\)
c. Kẻ \(DM\perp AC\)
Ta có: \(\widehat{ACB}=90^o\) ( góc nt chắn nửa đtròn )
`->` Tứ giác DMCK là hình chữ nhật
\(\rightarrow DK\perp BC\)
Mà \(OK\perp BC\)
\(\Rightarrow\) 3 điểm D,O,K thẳng hàng
Câu 3:
b, PT hoành độ giao điểm (d1) và (d2) là
\(2x+1=\dfrac{1}{3}x\Leftrightarrow\dfrac{5}{3}x=-1\Leftrightarrow x=-\dfrac{3}{5}\Leftrightarrow y=-\dfrac{3}{5}\cdot\dfrac{1}{3}=-\dfrac{1}{5}\\ \Leftrightarrow A\left(-\dfrac{3}{5};-\dfrac{1}{5}\right)\)
Vậy \(A\left(-\dfrac{3}{5};-\dfrac{1}{5}\right)\) là giao điểm của 2 đths
Bài 5:
Gọi chân đường cao từ A đến BC là H
Ta có \(OA=CH=1,1\left(m\right);AH=1,6\left(m\right)\)
Áp dụng HTL: \(BH=\dfrac{AH^2}{CH}=\dfrac{128}{55}\left(m\right)\)
Do đó chiều cao tường là \(BC=BH+HC=\dfrac{377}{110}\approx3,4\left(m\right)\)