K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) co

CM,CA là tiếp tuyên

=>CM=CA 

Xét (O) có

DM,DB là tiếp tuyến

=>DM=DB

CD=CM+MD

=>CD=CA+BD

b: Xet ΔACN và ΔDBN có

góc NAC=góc NDB

góc ANC=góc DNB

=>ΔACN đồng dạng vơi ΔDBN

=>AC/BD=AN/DN

=>CN/MD=AN/ND

=>MN/AC

 

DD
26 tháng 12 2022

Gợi ý:

a) Có \(A,M\) cùng nhìn \(CO\) dưới góc \(90^o\) nên \(A,C,M,O\) cùng thuộc một đường tròn. 

b) \(CA=CM,DB=DM\) (tính chất hai tiếp tuyến cắt nhau) 

Xét tam giác \(COD\) vuông tại \(O\) đường cao \(OM\):

\(OM^2=CM.DM=AC.BD\).

c) Kẻ \(MH\perp AB\). Kéo dài \(BM\) cắt \(Ax\) tại \(E\).

Tam giác \(AME\) vuông tại \(M\) có \(CM=CA\) do đó \(C\) là trung điểm của \(AE\)

Suy ra \(BC\) đi qua trung điểm của \(MH\).

Tương tự ta cũng chứng minh được \(AD\) đi qua trung điểm của \(MH\).

Vậy \(M,N,H\) thẳng hàng suy ra \(MN\perp AB\).

d) Ta có \(\dfrac{OC^2.OD^2}{CD^3}=\dfrac{\left(OC.OD\right)^2}{CD^3}=\dfrac{\left(OM.CD\right)^2}{CD^3}=\dfrac{OM^2}{CD}\).

\(\dfrac{DM}{DC}=\dfrac{MN}{AC},\dfrac{CM}{DC}=\dfrac{MN}{BD}\) suy ra \(\dfrac{DM+CM}{DC}=MN\left(\dfrac{1}{AC}+\dfrac{1}{BD}\right)\)

\(\Leftrightarrow MN=\dfrac{AC.BD}{AC+BD}=\dfrac{OM^2}{CD}\).

Suy ra đpcm. 

19 tháng 1 2017

A B E F x y M K O

a)\(\hept{\begin{cases}Ax⊥AB\\By⊥AB\end{cases}}\)=> Ax // By.\(\Delta KFB\)có EA // FB nên\(\frac{KF}{KA}=\frac{BF}{AE}\)(hệ quả định lí Ta-lét) mà EA = EM ; FM = FB (tính chất của 2 tiếp tuyến)

\(\Rightarrow\Delta AEF\)\(\frac{KF}{KA}=\frac{MF}{ME}\)nên MK // AE (định lí Ta-lét đảo) mà\(AE⊥AB\Rightarrow MK⊥AB\)

b)\(\widehat{EOM}=\frac{\widehat{AOM}}{2};\widehat{FOM}=\frac{\widehat{MOB}}{2}\)(tính chất 2 tiếp tuyến) mà\(\widehat{EOM}+\widehat{FOM}=180^0\)(kề bù)

\(\Rightarrow\widehat{EOF}=\widehat{EOM}+\widehat{FOM}=\frac{180^0}{2}=90^0\)

\(\Rightarrow\Delta EOF\)vuông tại O có OE + OF > EF (bđt tam giác) ; OE + OF < 2EF (vì OE,OF < EF)

\(\Rightarrow1< \frac{OE+OF}{EF}< 2\Rightarrow2< \frac{P_{EOF}}{EF}< 3\Rightarrow\frac{1}{3}< \frac{EF}{P_{EOF}}< \frac{1}{2}\)(1)

Hình thang AEFB (AE // FB) có diện tích là :\(\frac{\left(AE+FB\right).AB}{2}=\frac{\left(EM+FM\right).2R}{2}=EF.R\)

SAEO = SMEO vì có đáy OA = OM ; đường cao AE = ME\(\Rightarrow S_{MEO}=\frac{1}{2}S_{AEMO}\) 

SFOM = SFOB  vì có đáy FM = FB ; đường cao OM = OB\(\Rightarrow S_{FOM}=\frac{1}{2}S_{MFBO}\)

\(\Rightarrow S_{EOF}=\frac{1}{2}\left(S_{AEMO}+S_{MFBO}\right)=\frac{EF.R}{2}\).Từ tâm đường tròn nội tiếp I của\(\Delta EOF\)kẻ các đường vuông góc với OE,OF,EF thì\(S_{EOF}=S_{EIF}+S_{EIO}+S_{OIF}\)\(\Leftrightarrow\frac{EF.R}{2}=\frac{EF.r+EO.r+OF.r}{2}\)

\(\Rightarrow EF.R=P_{EOF}.r\Rightarrow\frac{r}{R}=\frac{EF}{P_{EOF}}\)(2).Thay (2) vào (1) ta có đpcm.

19 tháng 1 2017

sao nguyên bài khó thế